2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步测试试题(含详解).docx

上传人:可****阿 文档编号:30742848 上传时间:2022-08-06 格式:DOCX 页数:19 大小:580.94KB
返回 下载 相关 举报
2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步测试试题(含详解).docx_第1页
第1页 / 共19页
2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步测试试题(含详解).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步测试试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步测试试题(含详解).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第二十六章 综合运用数学知识解决实际问题同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有n个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加1项比赛,至多参加2项比赛,但乙、丙两项比赛

2、不能同时兼报,若在所有的报名方式中,必存在一种方式至少有10个人报名,则n的最小值等于( )A91B90C82D812、已知,则( )A64B52C24D163、某景区乘坐缆车观光游览的价目表如下:缆车类型两人车(限乘2人)四人车(限乘4人)六人车(限乘6人)往返费用80元120元150元某班20名同学一起来该景区游玩,都想坐缆车观光游览,且每辆缆车必须坐满,那么他们的费用最低为()A530元B540元C580元D590元4、设m,n是正整数,满足,给出以下四个结论:m,n都不等于1;m,n都不等于2:m,n都大于1;m,n至少有一个等于1其中正确的结论是( )ABCD5、把点A(2,1)向上

3、平移2个单位,再向右平移3个单位后得到B,点B的坐标是( ).A(5,3)B(1,3)C(1,3)D(5,1)6、笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,或C),再经过第二道门(或)才能出去问松鼠走出笼子的路线(经过的两道门)有( )种不同的可能?A12B6C5D27、已知,设则M,N,P,Q四数中最大的是( )AMBNCPDQ8、设三位数,若为三条边的长可以构成一个等腰(含等边)三角形,这样的三位数n有( )个A126B144C165D1749、谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为(

4、 )A量角器B直尺C三角板D圆规10、几何中研究物体时不研究它的( )A形状B大小C位置关系D颜色第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,,表示非负实数的整数部分,例如,按此方案,第6棵树种植点为 _;第2016棵树种植点为_2、已知,是不相等的正实数,且,则的取值范围为_3、多项式能被整除,则_,_4、能使成立的正整数n的值的个数等于_5、九章算术中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十今将钱三十,得酒二斗问醇、行酒各得几何?”其译文是:今有醇酒(优

5、质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱现有30钱,买得2斗酒问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为_三、解答题(5小题,每小题10分,共计50分)1、(阅读理解)用的矩形瓷砖,可拼得一些长度不同但宽度均为的图案已知长度为、的所有图案如下:(尝试操作)(1)如图,将小方格的边长看作,请在方格纸中画出长度为的所有图案(归纳发现)(2)观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整图案的长度所有不同图案的个数 2、华书店开学第一周卖出学生用书720本,第二周比第一周少卖,两周共卖出学生用书多少本?3、某数学兴趣小组开展了一次活动,过

6、程如下:设,小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上活动一:如图甲所示,从点开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,为第1根小棒数学思考:(1)小棒能无限摆下去吗?答:_;(填“能”或“不能”)(2)若,则_度;活动二:如图乙所示,从点开始,用等长的小棒依次向右摆放,其中为第1根小棒,且数学思考:(3)若已经向右摆放了3根小棒,则_,_,_(用含的式子表示);(4)若只能摆放4根小棒,求的范围4、某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具已知每袋贴纸有50张,每袋小红旗有20面,贴

7、纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠学校按(2)中的配套方案购买,共支付元,求关于的函数关系式现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?5、某种易拉罐呈圆柱状,其底面直径为7 cm,将6个这样的易拉罐如下图堆放

8、,求这6个易拉罐所占的宽度与高度-参考答案-一、单选题1、C【分析】先计算出一个人报名的选择有9种,然后根据必存在一种方式至少有10个人报名,可以让每一种方式都有9个人,然后只要任意一种再加一个人,继而可得出n的值【详解】解:对于一个人来说,他的报名方式有两种:报一项或两项,报一项比赛的方式有4种,报两项比赛的方式有5种,故可得:每个人报名方式有9种,又题目要求有10人相同,故可以让每一种方式都有9个人,然后只要任意一种再加一个人即可,所以nmin=99+1=82故选:C【点睛】此题考查了计数方法的问题,根据题意得出每人的报名方式有9种是解答本题的关键,要注意仔细理解题意,难度较大2、B【分析

9、】将两边平方,得到,再将运用立方差公式变形,把和代入即可求值.【详解】解:,=413=52.故选B.【点睛】本题考查了代数式求值,解题的关键是掌握立方差公式,难度不大.3、A【分析】由题意可知六人车每个人的价格最低,故费用最低时,六人车三辆,两人车一辆,以此进行分析计算即可.【详解】解:由表格可知,六人车每个人的价格最低,故费用最低时,六人车三辆,两人车一辆,1503+80450+80530(元),即最低费用为530元故选:A【点睛】本题考查有理数的混合运算,解答本题的关键是明确题意,列出相应的算式4、D【分析】利用如果当m1,n2,分析得出满足mnmn,即可得出错误,由mnmn,进行移项变形

10、得出(m1)(n1)1,即可得出答案【详解】解:如果当m1,n2,满足mnmn,所以:m,n都不等于1;m,n都不等于2;m,n都大于1;这些说法都不可能故错误;再来证明第四个命题:证明:mnmn,mnmn0,mnmn(m1)(n1)1,(m1)(n1)10,即(m1)(n1)1m,n是正整数,(m1)(n1)0,故m和n中至少有一个为1故答案m,n至少有一个等于1正确,故选:D【点睛】此题主要考查了整数问题的综合应用,利用特殊值法解决问题是数学中常用方法,同学们应学会这种方法5、B【详解】A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,1+2=3,-2+3=1;点B的坐标是(1,

11、3)故选B6、B【分析】解决本题的关键是分析两道门各自的可能性情况,然后再进行组合得到打开两道门的方法,这类题要读懂题意,从中找出组合的规律进行求解,本题不同的是首先分析每道门的情况数,然后整体进行组合即可得解【详解】解:因为第一道门有A、B、C三个出口,所以出第一道门有三种选择;又因第二道门有两个出口,故出第二道门有D、E两种选择,因此小松鼠走出笼子的路线有6种选择,分别为AD、AE、BD、BE、CD、CE故选:B【点睛】本题考查了概率、所有可能性统计,通过列举法可以举出所有可能性的路径7、D【分析】根据题意,再利用作差法比较与即可.【详解】解:,恒成立,最大,即Q最大,故选:D.【点睛】本

12、题考查了代数式的大小比较,解题的关键是掌握作差法.8、C【分析】先考虑等边三角形情况,则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个,再考虑等腰三角形情况,若a,b是腰,则a=b,列举出所有的情况,注意去掉不能构成三角形的结果,交换腰和底的位置,求和得到结果【详解】解:由题意知以a、b、c为三条边的长可以构成一个等腰(含等边)三角形,先考虑等边三角形情况,则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个,再考虑等腰三角形情况,若a,b是腰,则a=b,当a=b=1时,ca+b=2,则c=1,与等边三角形情况重复;当a=b=2时,c4,则c=1,3(c=2的情况等边三

13、角形已经讨论了),此时n有2个;当a=b=3时,c6,则c=1,2,4,5,此时n有4个;当a=b=4时,c8,则c=1,2,3,5,6,7,有6个;当a=b=5时,c10,有c=1,2,3,4,6,7,8,9,有8个;由加法原理知n有2+4+6+8+8+8+8+8=52个同理,若a,c是腰时,c也有52个,b,c是腰时也有52个所以n共有9+352=165个故选:C【点睛】本题考查了整数问题的综合运用,解答本题的关键是根据所给的条件不重不漏的列举出所有的结果,注意数字要首先能够构成三角形,即满足两边之和大于第三边9、D【详解】试题分析:利用圆规的特点:圆规有两只脚,一铁脚固定,另一脚旋转,可

14、判断.故选D考点:数学常识10、D【分析】根据数学学科常识即可解答,几何中我们不研究物体的颜色、质量和材质等【详解】几何中研究物体的形状、大小和位置关系,不研究它的颜色、质量和材质等故选D【分析】本题主要考查几何基本知识,理解几何研究的内容是解题关键二、填空题1、2 404 【解析】试题解析: , 当k=6时, 当k=2016时, 故答案为:2,404.2、【分析】根据题意及立方差公式的展开形式可得出,然后可求出ab与a+b的关系式,结合基本不等式即可得出答案.【详解】解:,a,b为不相等的两正数,又,解得,故答案为:.【点睛】本题考查基本不等式、立方公式的应用,难度不大,注意掌握立方公式的特

15、点,结合完全平方式是解决本题的关键.3、-11 4 【分析】设多项式和多项式的商为,通过和乘积与原多项式各项系数对比可求出b和c的值,从而得到m和n.【详解】解:多项式能被整除,设()()=,则()()=,可得,解得:,m=-3-2c=-11,n=c=4,故答案为:-11,4.【点睛】本题考查了多项式的乘除法,解题的关键是掌握运算法则.4、【分析】去绝对值解不等式,得到n的范围,从而可得结果【详解】解:由题意可得:,得,解得:,故答案为:【点睛】本题考查了解不等式和绝对值的性质,解题的关键是求出n值的取值范围5、【分析】设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付

16、30钱”列出方程组【详解】设买美酒x斗,买普通酒y斗,依题意得:,故答案是:【点睛】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组三、解答题1、 (1)见解析;(2)5,8,13.【分析】(1)根据已知条件作图可知时,所有图案个数5个;(2)推出长度为50cm时的所有图案,继而根据已知猜想60cm时所有图案的个数即可.【详解】(1)如图:根据作图可知时,所有图案个数5个;(2)时,如图所示,所有图案个数8个;同理,时,所有图案个数13个,故答案为5,8,13.【点睛】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题

17、的关键2、1320【分析】由题可知第二周卖的书是第一周卖的(1- )= ,所以两周共卖书为两周卖的书加起来即可【详解】解:由题可得,=600+720=1320(本)答:两周共卖出学生用书1320本3、(1)能;(2);(3);(4)【分析】(1)因为角的两条边为两条射线,没有长度限制,所以小棒可以无限摆下去;(2)根据直角三角形的性质、三角形外角的性质和等腰三角形的性质,即可推出;(3)根据三角形外角的性质、等腰三角形的性质即可推出,即可推出,同理即可推出,;(4)根据(3)的结论,和三角形外角的性质,即可推出不等式,解不等式即可【详解】(1)角的两边为两条射线,没有长度限制,小棒可以无限摆下

18、去;(2),为等腰三角形, ;(3),,,;(4)根据三角形内角和定理和等腰三角形的性质,解得,【点睛】本题考查了射线的性质、等腰三角形的性质、解一元一次不等式组,解题的关键在于找到等量关系,求相关角的度数4、(1)每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)购买小红旗袋恰好配套;(3)需要购买国旗图案贴纸和小红旗各48,60袋,总费用元【分析】(1)设每袋国旗图案贴纸为元,则有,解得,检验后即可求解;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得;(3)如果没有折扣,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【详解】(1)设每袋国旗图案贴纸为元,则有,解得,经检验是方程

19、的解,每袋小红旗为元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得,答:购买小红旗袋恰好配套;(3)如果没有折扣,则,依题意得,解得,当时,则,即,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元【点睛】本题考查分式方程,一次函数的应用,能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.5、宽度是:21cm,高度是:()cm.【分析】根据圆的对称性,找到其圆心,连接圆心得到等边三角形,求得等边三角形的边长,即可求解.【详解】易拉罐呈圆柱状,其底面圆的直径为7 cm,设A,B,C,D是圆心,ABC是等边三角形,D是BC的中点AB=BC=AC=14cm,ADBC,AD=BD=cm,高度是:()cm,宽度是:14+7=21cm.【点睛】本题主要考查圆的性质,连接它们的圆心,转化成等边三角形,求边长,是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁