《精品试卷京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步测评试题.docx》由会员分享,可在线阅读,更多相关《精品试卷京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步测评试题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、,则( )AB0C32D642、一次水灾中,大约有20万人的生活受到影响,灾情持续一天,就需粮食可能为()A
2、50万千克B40万千克C20万千克D10万千克3、鄞州区有两大美丽的公园,分别是鄞州公园和鄞州湿地公园,两大公园的占地面积约达800000平方米,若按比例尺1:2000缩小后的面积大约相当于()A一个篮球场的面积B一个乒乓球台的面积C数学课本封面的面积D宁波日报一个版面的面积4、由邯郸到北京的某一次列车,运行途中停靠的车站依次是:邯郸邢台石家庄保定北京,那么要为这次列车制作的火车票有( )A9种B20种C10种D72种5、下列方程中是二项方程的是( )A;B=0;C;D=16、如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离
3、要解开图一的链子至少要解开几个圈呢?()A5个B6个C7个D8个7、有n个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加1项比赛,至多参加2项比赛,但乙、丙两项比赛不能同时兼报,若在所有的报名方式中,必存在一种方式至少有10个人报名,则n的最小值等于( )A91B90C82D818、如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是( )A19.4B19.5C19.6D19.79、某民俗旅游村为接待游客住宿需要,开设了有张床位的旅
4、馆,当每张床位每天收费元时,床位可全部租出若每张床位每天收费提高元,则相应的减少了张床位租出如果每张床位每天以元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )A14元B15元C16元D18元10、用0,1,2,3,4,5六个数字组成无重复数字的四位数中有( )个四位偶数A96B156C180D216第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的两根满足,且,则实数a的取值范围是_2、甲、乙两人参加射击比赛,每人各射击10次,两人所得环数的平均数相同,其中甲所得环数的方差为15,乙所得环数的方差为18,那么成绩较为稳定的是_(填“甲
5、”或“乙”)3、(问题提出):将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?(问题探究):要研究上面的问题,我们不妨先从特例入手,进而找到一般规律探究一:将一个边长为2的菱形的四条边分别2等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为12的平行四边形,共有213个;(2)第二行有斜边长为1,底长为12的平行四边形,共有213个;为了便于归纳分析,我们把平行四边形下面的底在第二行的所有
6、平行四边形均算作第二行的平行四边形,以下各行类同第二行因此底第二行还包括斜边长为2,底长为12的平行四边形,共有213个即:第二行平行四边形共有23个所以如图1,平行四边形共有2339(21)2我们再研究菱形的个数:分析:边长为1的菱形共有22个,边长为2的菱形共有12个,所以:如图1,菱形共有22125235个探究二:将一个边长为3的菱形的四条边分别3等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为13的平行四边形,共有3216个;(2)第二行有斜边长为1,底长为
7、12的平行四边形,共有3216个;底在第二行还包括斜边长为2,底长为13的平行四边形,共有3216个,即:第二行平行四边形共有26个(3)第三行有斜边长为1,底长为13的平行四边形,共有3216个;底在第三行还包括斜边长为2,底长为13的平行四边形,共有3216个底在第三行还包括斜边长为3,底长为13的平行四边形,共有3216个,即:第三行平行四边形共有36个所以如图2,平行四边形共有36266(321)6(321)2我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个所以:如图2,菱形共有32221214347个探究三:将一个边长为4的菱形
8、的四条边分别4等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为14的平行四边形,共有432110个;(2)第二行有斜边长为1,底长为14的平行四边形,共有432110个;底在第二行还包括斜边长为2,底长为14的平行四边形,共有432110个,即:第二行平行四边形共有210个(3)模仿上面的探究,第三行平行四边形总共有 个(4)按照上边的规律,第四行平行四边形总共有 个所以,如图3,平行四边形总共有 个我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱
9、形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个所以:如图3,菱形共有42322212 个,(仿照前面的探究,写成三个整数相乘的形式)(问题解决)将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是 和菱形个数分别是 (用含n的代数式表示)(问题应用)将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,若得出该菱形被剖分的网格中的平行四边形的个数是441个,则n (拓展延伸)将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,当该菱形被剖分的网格中的平行四边形的个数与菱形个数之
10、比是13519时,则n 4、多项式除以所得的余式是_5、能使成立的正整数n的值的个数等于_三、解答题(5小题,每小题10分,共计50分)1、已知、两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地后停止甲、乙两车相距的路程(千米)与甲车的行驶时间(时)之间的函数关系如图所示(1)乙车的速度为 千米/时, , (2)求甲、乙两车相遇后与之间的函数关系式(3)当甲车到达距地70千米处时,求甲、乙两车之间的路程2、某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产
11、销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030y(袋)252010若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?3、如图,一块梯形草地中有一条2米宽的长方形小路,已知小路的面积是16平方米,求草地的面积4、小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,
12、且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由5、某“综合与实践”小组开展了测量本校旗杆高度的实践活动他们制定了测量方案,并利用课余时间完成了实地测量他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取他们的平均值作为测量结果,测量数据如下表(不完整)课题测量旗杆的高度成员组长: 组员:,测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示旗杆,测量角
13、度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内点C,D,E在同一直线上,点E在GH上测量数据测量项目第一次第二次平均值GCE的度数25.625.825.7GDE的度数31.230.831A,B之间的距离5.4m5.6m任务一:两次测量A,B之间的距离的平均值是_m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度(参考数据:sin25.70.43,cos25.70.90,tan25.70.48,sin310.52,cos310.86,tan310.60)任务三:该“综合与
14、实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳你认为其原因可能是什么?(写出一条即可)-参考答案-一、单选题1、C【分析】将x=1代入可知a12+a11+a10+a1x+a0的值,将x=-1代入可求得a12-a11+a10-a9+-a1x+a0的值,然后将两式相加可求得a12+a10+a8+a6+a4+a2+a0的值,最后将x=0代入可求得a0的值【详解】解:将x=1代入得:a12+a11+a10+a1x+a0=64,将x=-1代入得:a12-a11+a10-a9+-a1x+a0=0,+得:2(a12+a10+a8+a6+a4+a2+a0)=64a12
15、+a10+a8+a6+a4+a2+a0=32将x=0代入得:a0=64a12+a10+a8+a6+a4+a2=32-64=-32故选:C【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键2、D【分析】答题时首先知道一个人一天需要粮食多少,然后估算20万人需多少粮食【详解】人一天需要0.5kg粮食,故有20万人的生活受到影响,灾情持续一天,就需粮食可能为10万kg故选D【点睛】本题主要考查数学常识的知识点,知道生活中的数学常识是解答本题的关键3、D【分析】求按比例尺缩小后面积,再根据实际判断.【详解】依题意得,缩小后面积是:800000平方米20002=0.2平方米,大约是宁波日报
16、一个版面的面积.故选D【点睛】本题考核知识点:比例尺. 解题关键点:理解比例尺的意义.4、A【详解】共需制作的车票数为:4+3+2+1,=210,=10(种)故选A5、C【解析】【分析】二项方程:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程据此可以判断.【详解】A. ,有2个未知数项,故不能选; B. =0,没有非0常数项,故不能选; C. ,符合要求,故能选; D. =1,有2个未知数项,故不能选故选C【点睛】本题考核知识点:二项方程.解题关键点:理解二项方程的定义.6、C【解析】【分析】通过观察图形,找到铁圈的方法:解开1、3、5、13个
17、环即可.【详解】只要解开1、3、5、13个环即可环环都脱离,7所以只要解开7个环即可环环都脱离故选:C【点睛】本题考查了找规律,解题的关键是能够看出解开奇数个环即可环环脱离.7、C【分析】先计算出一个人报名的选择有9种,然后根据必存在一种方式至少有10个人报名,可以让每一种方式都有9个人,然后只要任意一种再加一个人,继而可得出n的值【详解】解:对于一个人来说,他的报名方式有两种:报一项或两项,报一项比赛的方式有4种,报两项比赛的方式有5种,故可得:每个人报名方式有9种,又题目要求有10人相同,故可以让每一种方式都有9个人,然后只要任意一种再加一个人即可,所以nmin=99+1=82故选:C【点
18、睛】此题考查了计数方法的问题,根据题意得出每人的报名方式有9种是解答本题的关键,要注意仔细理解题意,难度较大8、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可【详解】解:由于两把直尺在刻度10处是对齐的, 观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.
19、6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键9、C【分析】设每张床位提高x个单位,每天收入为y元,根据等量关系“每天收入=每张床的费用每天出租的床位”可求出y与x之间的函数关系式,运用公式求最值即可【详解】设每张床位提高x个2元,每天收入为y元根据题意得:y=(10+2x)(10010x)=20x2+100x+1000当x=2.5时,可使y有最大值又x为整数,则x=2时,y=1120;x=3时,y=1120;则为使租出的床位少且租金高,每张床收费=10+32=16(元)故选C【点睛】本题考查了二次函数的实际应用
20、,借助二次函数解决实际问题,利用二次函数对称性得出是解题的关键10、B【分析】无重复数字的四位偶数包含个位是0和个位是2或4的两种情况,由此能得出无重复数字的四位偶数的个数【详解】解:无重复数字的四位偶数个位是0的有个,个位是2或4的共有个,无重复数字的四位偶数共有60+96=156个,故选:B【点睛】本题考查了分类分步计数法的综合运用,考查了学习综合分析,分类讨论的能力,属于中档题二、填空题1、(,1)(1+,+)【分析】根据方程根的个数与判别式之间的关系证明0恒成立,由题意判断出另一个根的范围,再由f(1)0求出a的范围,利用f(0)0进一步确定两个根的关系,再由韦达定理求出a范围,再取交
21、集【详解】解:|x2|x1(1x2),x1(1x2)0,又0x11,x21,设f(x)(a2+1)x22ax3,方程有两根,4a2+12(a2+1)0恒成立,则f(1)a22a20,解得a1+或a1;f(0)3,x20x11,则|x2|x1(1x2)可化简为:x1+x2x1x2,利用韦达定理得,解得a实数a的取值范围是:(,1)(1+,+),故答案为:(,1)(1+,+)【点睛】本题考查了一元二次方程的解法,对于含有参数的方程,借助于判别式的符号以及韦达定理、根的范围对应的函数值的符号,进行求解2、甲【分析】根据方差波动越小越稳定可以解答本题【详解】解:s2甲15,s2乙18,1518,成绩较
22、稳定的是甲,故答案为:甲【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答3、探究三:(3)3(4321);(4)4(4321),(4321)2,459个;【问题解决】(nn1n21)2,n(n1)(2n1);【问题应用】6;【拓展延伸】9【分析】探究三:通过第一行,第二行,可推出第三行的规律为 3(4321)个,进而推出第四行的规律为 4(4321)个,再通过边长为4求出总个数即可;问题解决:根据边长为4的规律,归纳边长为n的情形得到平行四边形的总个数(nn1n21)2,菱形的个数为n(n1)(2n1)即可;问题应用:根据平行四边形个数构造方程,解方程即可;拓展延伸:根据规律
23、利用平行四边形的个数与菱形个数的比构造方程,化简整理,解方程即可得到其他答案【详解】解:探究三:(3)通过第一行,第二行,可推出第三行平行四边形总共有 3(4321)个故答案为:3(4321);(4)按照以上规律,第四行平行四边形共有 4(4321)个,所以,如图 3,平行四边形共有 4(4321)3(4321)2(4321)1(4321)(4321)(4321)(4321)2个我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个所以:如图3,菱形共有42322212(459)个,(仿照前面的探究,写成三个整数相乘的
24、形式)故答案为:4(4321),(4321)2,459;问题解决:将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是(nn1n21)2和菱形个数分别是n(n1)(2n1)个(用含n的代数式表示)故答案为:(nn1n21)2,n(n1)(2n1);问题应用:根据题意可得,(nn1n21)2441,nn1n2121,n6故答案为:6;拓展延伸:Sn(n1)(n2)1, S123n,得 2Sn(n1),S,根据题意可得,整理得:,解得:n9,或者n(舍去),故n的值为9故答案为:9【点睛】本题考查是找规律的试题,通过探究,问
25、题解决,应用,拓展使问题逐步加深,培养学生分析问题,研究问题,解决问题,应用拓展能力,仔细观察图形,通过不完全归纳法,得出规律,利用规律构造方程,解一元二次方程是解题关键4、【分析】利用公式多项式的除法逐项化简即可.【详解】解:由题意可得:=+余式为.故答案为:.【点睛】本题考查了多项式除法和余式的概念,解题的关键是多项式的除法运算进行求解.5、【分析】去绝对值解不等式,得到n的范围,从而可得结果【详解】解:由题意可得:,得,解得:,故答案为:【点睛】本题考查了解不等式和绝对值的性质,解题的关键是求出n值的取值范围三、解答题1、(1)75;3.6;4.5;(2);(3)当甲车到达距地70千米处
26、时,求甲、乙两车之间的路程为180千米【分析】(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定的值;(2)运用待定系数法解得即可;(3)求出甲车到达距地70千米处时行驶的时间,代入(2)的结论解答即可【详解】解:(1)乙车的速度为:千米/时,故答案为75;3.6;4.5;(2)(千米),当时,设,根据题意得:,解得,;当时,设,;(3)甲车到达距地70千米处时行驶的时间为:(小时),此时甲、乙两车之间的路程为:(千米)答:当甲车到达距地70千米处时,求甲、乙两车之间的路程为180千米【点睛】考核知识点:一次函数的应用.把实际问
27、题转化为函数问题是关键.2、(1)yx+40;(2)要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润总销量总利润,进而求出二次函数最值即可.【详解】(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为ykx+b得,解得,故日销售量y(袋)与销售价x(元)的函数关系式为:yx+40;(2)依题意,设利润为w元,得w(x10)(x+40)x2+50x+400,整理得w(x25)2+225,10,当x2时,w取得最大
28、值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了一次函数的应用,二次函数的应用,正确分析得出各量间的关系并熟练掌握二次函数的性质是解题的关键.3、108【解析】由题意知梯形草地的高是162=8(米),则草地的面积为(4+6+18-2)8 2=104(米2)4、到甲超市购买这种cc饮料便宜【分析】设甲超市cc饮料每瓶的价格为x元,乙超市cc饮料每瓶的价格为y元,根据“小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元”
29、,即可得出关于x,y的二元一次方程组,解之比较后即可得出结论【详解】设甲超市cc饮料每瓶的价格为x元,乙超市cc饮料每瓶的价格为y元,依题意,得:,解得:33.5,到甲超市购买这种cc饮料便宜【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键5、任务一:5.5;任务二:旗杆GH的高度为14.7m;任务三:答案不唯一,如没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等【分析】任务一:根据两次测量结果直接求平均值就可以得到答案;任务二:设ECxm,解直角三角形即可得到结论;任务三:根据题意得到没有太阳光,或旗杆底部不可能达到相等(答案不唯一)【详解】
30、解:任务一:平均值=(5.4+5.6)2=5.5m故答案为:5.5;任务二:由题意可得,四边形ACDB,ACEH都是矩形,EH=AC=1.5,CD=AB=5.5,设EG=xm,在RtDEG中,DEG=90,GDE=31,tan31=,DE=,在RtCEG中,CEG=90,GCE=25.7,tan25.7=,CE=,CD=CEDE,=5.5,x=13.2,GH=GE+EH=13.2+1.5=14.7.答:旗杆GH的高度为14.7m.任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键