人教版八年级数学下册第十八章-平行四边形专题练习练习题(精选).docx

上传人:可****阿 文档编号:30738726 上传时间:2022-08-06 格式:DOCX 页数:27 大小:404.41KB
返回 下载 相关 举报
人教版八年级数学下册第十八章-平行四边形专题练习练习题(精选).docx_第1页
第1页 / 共27页
人教版八年级数学下册第十八章-平行四边形专题练习练习题(精选).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《人教版八年级数学下册第十八章-平行四边形专题练习练习题(精选).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十八章-平行四边形专题练习练习题(精选).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十八章-平行四边形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段E

2、C绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D42、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D93、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形4、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AEBC,垂足为点E,则AE的长是( )A5B2CD5、如图,矩形ABCD中,AC交BD于点O,且AB=24,BC=10

3、,将AC绕点C顺时针旋转90至CE连接AE,且F、G分别为AE、EC的中点,则四边形OFGC的面积是( )A100B144C169D2256、如图,四边形和四边形都是矩形若,则等于( )ABCD7、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C7m31D7m128、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A2.5B6C6.5D139、如图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D4010、如图菱形ABCD,对角线AC,BD相交于点O,若BD8,AC6,则AB的长是(

4、)A5B6C8D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _2、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_ 3、如图,在矩形ABCD中,AD3AB,点G,H分别在AD,BC上,连BG,DH,且,当_时,四边形BHDG为菱形4、如图所示,正方形ABCD的面积为6,CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,则KA

5、+KE的最小值为 _5、点D、E分别是ABC边AB、AC的中点,已知BC12,则DE_三、解答题(5小题,每小题10分,共计50分)1、如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上(1)在方格纸中画出以AB为对角线的正方形AEBF,点E、F在小正方形的顶点上;(2)在方格纸中画出以CD为斜边的等腰直角三角形CDM,连接BM,并直接写出BM的长2、如图,在长方形ABCD中,AB3,BC4,点E是BC边上一点,连接AE,将B沿直线AE折叠,使点B落在点处(1)如图1,当点E与点C重合时,与AD交于点F,求证:FAFC;(2)如图2,当点E不

6、与点C重合,且点在对角线AC上时,求CE的长3、如图,四边形ABCD是平行四边形,延长DA,BC,使得AECF,连接BE,DF(1)求证:ABECDF;(2)连接BD,若132,ADB22,请直接写出当ABE 时,四边形BFDE是菱形4、已知:如图,在中,求证:互相平分如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4(1)判断ACF的形状,并说明理由;(2)求ACF的面积;5、如图,将ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE(1)求证:四边形ABEC是平行四边形;(2)若AFC=2ADC,求证:四边形

7、ABEC是矩形-参考答案-一、单选题1、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC

8、的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键2、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半

9、的性质,三角形中位线定理,求出DF的长是解题的关键3、B【解析】【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键4、D【解析】【分析】根据菱形的性质得出BO、CO的长,在RtBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】解:四边形ABCD是菱形,CO=AC=3,BO=BD=4,AOBO

10、,BC= =5,S菱形ABCD=,S菱形ABCD=BCAE,BCAE=24,AE=,故选:D【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分5、C【解析】【分析】先根据矩形的性质、三角形中位线定理可得,再根据平行四边形的判定可得四边形为平行四边形,然后根据旋转的性质可得,从而可得,最后根据正方形的判定可得四边形为正方形,由此即可得【详解】解:四边形为矩形,分别为的中点,四边形为平行四边形,又绕点顺时针旋转,平行四边形为正方形,四边形的面积是,故选:C【点睛】本题考查了矩形的性质、正方形的判定与性质、三角形中位线定理等知识点,熟练

11、掌握正方形的判定与性质是解题关键6、A【解析】【分析】由题意可得AGF=DAB=90,由平行线的性质可得,即可得DGF=70【详解】解:四边形ABCD和四边形AEFG都是矩形AGF=DAB=90,DC/AB故选:A【点睛】本题考查了矩形的性质,熟练掌握矩形的性质是本题的关键7、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键8、C【解析】【分析】利用勾股定理列式

12、求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答【详解】解:由勾股定理得,斜边,所以,斜边上的中线长故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,解题的关键是熟记性质9、C【解析】【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键10、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解

13、】解:四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBO,在RtAOB中,由勾股定理得:,故选:A【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键二、填空题1、80【解析】【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知

14、识点熟练掌握各性质是解题的关键2、5cm或5.2cm【解析】【分析】当点P在BC上,AMBP,当点P在AB上,AMBP,当点P在CD上,如图,根据PB=AM,可证RtABMRtBCP(HL),可证BPAM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证RtABMRtBAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点P在BC上,AMBP,当点P在AB上,AMBP,不合题意,舍去;当点P在CD上,如图,PB=AM四边形ABCD为正方形,AB=BC=AD=CD=8,在RtABM和RtBCP中,RtABM

15、RtBCP(HL),MAB=PBC,MAB+AMB=90,PBC+AMB=90,BNM=180-PBC-AMB=90,BPAM,MC=2cm,BM=BC-MC=8-2=6cm,AM=,PN=BP-BN=AM-BN=10-4.8=5.2cm,当点P在AD上,如图,在RtABM和RtBAP中,RtABMRtBAP(HL),BM=AP,AMB=BPA,MAB=PBA,AN=BN,ADBC,PAN=NMB=APN,AN=PN=BN=MN,AM=BP=10cm,PN=cm,PN的长为5cm或5.2cm故答案为5cm或5.2cm【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与

16、性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键3、【解析】【分析】设 则再利用矩形的性质建立方程求解 从而可得答案.【详解】解: 四边形BHDG为菱形, 设 AD3AB,设 则 矩形ABCD, 解得: 故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.4、【解析】【分析】根据正方形的性质可知C、A关于BD对称,推出CKAK,推出EK+AKCE,根据等边三角形性质推出CECD,根据正方形面积公式求出CD即可【详解】解:四边形ABCD是正方形,C、A关于BD对

17、称,即C关于BD的对称点是A,如图,连接CK,则CKAK,EK+CKCE,CDE是等边三角形,CECD,正方形ABCD的面积为6,CD,KA+KE的最小值为,故答案为:【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K的位置和求出KA+KE的最小值是CE5、6【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可【详解】解:D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=12,DE=BC=6,故答案为6【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键三、解答题1、(1)见详解;(2)见详解

18、【分析】(1)根据勾股定理求出AB的长,以AB为对角线的正方形AEBF,根据正方形的性质求出正方形边长AE=,根据勾股定理构造直角三角形横1竖3,或横3竖1,利用点A平移找到点E,点F即可完成求解;(2)根据勾股定理求出CD的长,CDM为等腰直角三角形,设CM=DM=x,再利用勾股定理,根据勾股定理构造横1竖2,或横2竖1直角三角形,利用点C平移得到点M,即可得到答案【详解】(1)根据勾股定理AB=,以AB为对角线的正方形AEBF,S正方形=,正方形AEBF的边长为AE,AE2=10,AE=,根据勾股定理可知构造横1竖3或横3竖1的直角三角形作线段AE、AF,点A向下平移1格,再向左平移3格得

19、点E,点A向右平移1格,再向下平移3格得点F,连结AE,BE,BF,AF,则正方形ABEF作图如下:(2)根据勾股定理 ,CDM为等腰直角三角形,设CM=DM=x,根据勾股定理,即,解得,CM=DM=,根据勾股定理构造横1竖2,或横2竖1直角三角形作线段CM、DM,点C向右移动2格,再向上移动1格得点M,连结CM,DM,则CDM为所求如图【点睛】本题考查了正方形性质、正方形面积,边长,等腰直角三角形、腰长,勾股定理,一元二次方程,平移;解题的关键是熟练掌握正方形性质、等腰直角三角形性质,勾股定理,一元二次方程,平移,从而完成求解2、(1)见解析;(2)CE=【分析】(1)根据平行线的性质及折叠

20、性质证明FAC=FCA即可(2)由题意可得,根据勾股定理求出AC=5,进而求出BC=2,设CE= x然后在Rt中,根据勾股定理EC2=2+2列方程求解即可;【详解】解:(1)如图1,四边形ABCD是矩形,ADBC,FAC=ACB,ACB=ACF,FAC=FCA,FA=FC (2),如图2, 设CE= x,四边形ABCD是矩形,B=90,AC2=AB2+BC2= 32+42=25,AC=5,由折叠可知:,=5-3=2,在Rt中,EC2=2+2x2=(4-x)2+22,x=,CE=【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的

21、关键是学会利用参数构建方程解决问题,属于中考常考题型3、(1)见解析;(2)12【分析】(1)由“SAS”可证ABECDF;(2)通过证明BE=DE,可得结论【详解】证明:(1)四边形ABCD是平行四边形,AB=CD,BAD=BCD,1=DCF,在ABE和CDF中,ABECDF(SAS);(2)当ABE=10时,四边形BFDE是菱形,理由如下:ABECDF,BE=DF,AE=CF,四边形ABCD是平行四边形,AD=BC,AD+AE=BC+CF,BF=DE,四边形BFDE是平行四边形,1=32,ADB=22,ABD=1-ADB=10,ABE=12,DBE=22,DBE=ADB=22,BE=DE,

22、平行四边形BFDE是菱形,故答案为:12【点睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键4、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;【详解】证明:连接,ADDB,BEEC,BEEC,AFFC,四边形ADEF是平行四边形,AE,DF互相平分【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键(1)ACF是等腰三角形,理由见解析;(2)10;(3)5、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得

23、到,AB=CD,然后根据CE=DC,得到AB=EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可; (2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论【详解】证明:(1)四边形ABCD是平行四边形, ,AB=CD, CE=DC, AB=EC, 四边形ABEC是平行四边形; (2)由(1)知,四边形ABEC是平行四边形, FA=FE,FB=FC 四边形ABCD是平行四边形, ABC=D 又AFC=2ADC, AFC=2ABC AFC=ABC+BAF, ABC=BAF, FA=FB, FA=FE=FB=FC, AE=BC, 四边形ABEC是矩形【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁