《2021-2022学年人教版八年级数学下册第十八章-平行四边形课时练习练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十八章-平行四边形课时练习练习题.docx(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45,OAOC,则点B的坐标为()A(,1)B(1
2、,)C(1,1)D(1,1)2、如图,在菱形ABCD中,AB5,AC8,过点B作BECD于点E,则BE的长为( )ABC6D3、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若10,则EAF的度数为()A40B45C50D554、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形下面是某个合作小组的4位同学拟定的方案,其中正确的是( )A测量对角线是否互相平分B测量两组对边是否分别相等C测量其内角是否均为直角D测量对角线是否垂直5、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正
3、半轴于一点,则这个点表示的实数是( )A2.5B2CD6、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A梯形的下底是上底的两倍B梯形最大角是C梯形的腰与上底相等D梯形的底角是7、如图,在菱形中,P是对角线上一动点,过点P作于点E于点F若菱形的周长为24,面积为24,则的值为( )A4BC6D8、如图,将矩形纸片按如图所示的方式折叠,得到菱形,若,则的长为( )A2BC4D9、如图,矩形ABCD中,DEAC于E,若ADE2EDC,则BDE的度数为( )A36B30C27D1810、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、
4、7,则的值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且EDF45,将DAE绕点D逆时针旋转90,得到DCM若AE2,则FM的长为 _2、如图,在平行四边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _3、如图,在ABC中,ACB90,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+
5、BC7,空白部分面积为16,则图中阴影部分的面积是 _4、点D、E、F分别是ABC三边的中点,ABC的周长为24,则DEF的周长为_5、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD为平行四边形,BAD的平分线AF交CD于点E,交BC的延长线于点F点E恰是CD的中点求证:(1)ADEFCE;(2)BEAF2、已知如图,在中,点是边上一点,连接,点是上一动点,连接(1)如图1,当时,连接,延长交于点,求证:;(2)如图2,以为直角边作等腰,连接,若,当点在运动过程中,求周长的最小值3、已知
6、:在中,点、点、点分别是、的中点,连接、(1)如图1,若,求证:四边形为菱形;(2)如图2,过作交延长线于点,连接,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形4、如图:已知BCD是等腰直角三角形,且DCB90,过点D作ADBC,使ADBC,在AD上取一点E,连结CE,点B关于CE的对称点为B1,连结B1D,并延长B1D交BA的延长线于点F,延长CE交B1F于点G,连结BG(1)求证:CBGCDB1;(2)若AEDE,BC10,求BG长;(3)在(2)的条件下,H为直线BG上一点,使HCG为等腰三角形,则所有满足要求的BH的长是 (直接写出答案)5、在菱形ABCD中,A
7、BC60,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE若AB2,BE2,请直接写出APE的面积-参考答案-一、单选题1、C【解析】【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形
8、则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解2、B【解析】【分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,在中,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键3、A【解析】【分析】可以设EAD,FAB,根据折叠可得DAFDAF,BAEBAE,用,表示DAF10+,BAE10+,根据四边形ABCD是矩形,利用DAB90,列方程10+10+10+90,求出+30即可求解【详解】解:设EAD,FAB,根据折叠性质可知:D
9、AFDAF,BAEBAE,BAD10,DAF10+,BAE10+,四边形ABCD是矩形DAB90,10+10+10+90,+30,EAFBAD+DAE+FAB,10+,10+30,40则EAF的度数为40故选:A【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系4、C【解析】【分析】根据矩形的判定:(1)四个角均为直角;(2)对边互相平行且相等;(3)对角线相等且平分,据此即可判断结果【详解】解:A、根据矩形的对角线相等且平分,故错误;B、对边分别相等只能判定四边形是平行四边形,故错误;C、矩形的四个角都是直角,故正确;D、矩
10、形的对角线互相相等且平分,所以垂直与否与矩形的判定无关,故错误故选:C【点睛】本题主要考查的是矩形的判定方法,熟练掌握矩形的判定是解题的关键5、D【解析】【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可【详解】解:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键6、D【解析】【分析】如图(见解析),先根据平角的定义可得,再根据
11、可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项【详解】解:如图,梯形是等腰梯形, ,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,是等边三角形,点共线,四边形是平行四边形,四边形是菱形,选项A、C正确;故选:D【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键7、A【解析】【分析】连接BP,通过菱形的周长为2
12、4,求出边长,菱形面积为24,求出的面积,然后利用面积法,即可求出的值【详解】解:如图所示,连接BP,菱形ABCD的周长为24,又菱形ABCD的面积为24, ,故选:A【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系8、D【解析】【分析】根据菱形及矩形的性质可得到BAC的度数,从而根据直角三角形的性质求得BC的长【详解】解:四边形AECF为菱形,FCO=ECO,EC=AE,由折叠的性质可知,ECO=BCE,又FCO+ECO+BCE=90,FCO=ECO=BCE=30,在RtEBC中,EC=2EB,又EC=AE,AB=AE+EB=6,EB=2,EC=4,RtBCE中
13、,故选:D【点睛】本题主要考查了菱形的性质以及矩形的性质,解决问题的关键是根据折叠以及菱形的性质发现特殊角,根据30的直角三角形中各边之间的关系求得BC的长9、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出【详解】解:在矩形ABCD中,故选:B【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键10、B【解析】【分析】过点A作ABC的高,设为x,过点E作EFC的高为,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解【详解】解:过点A作ABC的高,设为x,过点E作E
14、FC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,AD为平分线,DM=DN,即: ,故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出二、填空题1、5【解析】【分析】由旋转性质可证明EDFMDF,从而EF=FM;设FM=EF=x,则可得BF=8x,由勾股定理建立方程即可求得x【详解】由旋转的性质可得:DE=DM,CM=AE=2,ADE=CDM,EDM=90四边形ABCD是正方形ADC=B=90,AB=BC=6ADE+FDC=ADCEDF=45FDC+CDM=45即MDF=45EDF=MDF在EDF和MDF中EDFM
15、DF(SAS)EF=FM设EF=FM=x则在RtEBF中,由勾股定理得:解得:故答案为:5【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理等知识,运用了方程思想,关键是证明三角形全等2、1【解析】【分析】根据基本作图,得到EC是BCD的平分线,由ABCD,得到BEC=ECD=ECB,从而得到BE=BC,利用线段差计算即可【详解】根据基本作图,得到EC是BCD的平分线,ECD=ECB,四边形ABCD是平行四边形,ABCD,BEC=ECD,BEC=ECB,BE=BC=5,AE= BE-AB=5-4=1,故答案为:1【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性
16、质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键3、【解析】【分析】根据余角的性质得到,根据全等三角形的性质得到,推出,根据勾股定理得到,解方程组得到,接着由图可知空白部分为重叠部分,阴影部分为非重叠部分,所以2倍的空白部分与阴影部分面积和等于三个正方形与三角形面积和结合即可得出结论依此即可求解【详解】解:如图,四边形是正方形,即,在中,阴影部分的面积和= 三个正方形面积+三角形面积-2倍空白部分面积=故答案为:【点睛】本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用4、12【解析】【分析】据D、E、F分别是AB、A
17、C、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答【详解】解:如图所示,D、E、F分别是AB、BC、AC的中点,ED、FE、DF为ABC中位线,DFBC,FEAB,DEAC,DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)2412故答案为:12【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路5、4【解析】【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=EN
18、C,MFN=C,求出EMF=90,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90,NMF=180-90=90,EMF=90,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行
19、线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键三、解答题1、(1)见解析;(2)见解析【分析】(1)由平行四边形的性质得出ADBC,得出DECF,则可证明ADEFCE(ASA);(2)由平行四边形的性质证出ABBF,由全等三角形的性质得出AEFE,由等腰三角形的性质可得出结论【详解】证明:(1)四边形ABCD为平行四边形,ADBC,DECF,E为CD的中点,EDEC,在ADE和FCE中,ADEFCE(ASA);(2)四边形ABCD为平行四边形,ABCD,ADBC,FADAFB,又AF平分BAD,FADFABAFBFABABBF,ADEFCE
20、,AEFE,BEAF【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键2、(1)证明见解析;(2)【分析】(1)通过证明CEKBEF及KEDFED即可证明;(2)延长CE到点P,使EPCE,先证明点G在过点P且与CE垂直的直线PN上运动,再作点E关于点P的对称点Q,连接BQ交PN于点G,此时BEG的周长最小,求出此时GE+GB+BE的值即可【详解】证明:(1)四边形ABCD是平行四边形,KABE,BFAB, ABF90, ABE90EBFBFE,KBFE,BECE,CEKBEF(AAS),CKBF,EKEF,KEDE
21、BC,FEDECB,BECE,EBCECB,KEDFED,EDED,KEDFED(SAS),DKDF,(2)如图,作BNBE,GNBN于点N,延长NG交射线CE于点P,则EBNFBG90,NBGEBF90GBE,NBEF90,BGBF,BNGBEF(AAS),BNBE;EBNNBEP90,四边形BEPN是正方形,PEBECE,当点F在CE上运动时,点G在PN上运动;延长EP到点Q,使PQPE,连接BQ交PN于点G,PN垂直平分EQ,点Q与点E关于直线PN对称,两点之间,线段最短,此时GE+GBGQ+GBBQ最小,BE为定值,此时GE+GB+BE最小,即BEG的周长最小;作DHCE于点H,则DH
22、EDHC90,ECBEBC45,HEDECB45,HDE45HED,DHEH,DH2+EH22DH2DE2,DHEH1;CH,BECEEH+CH1+23,EQ2PE2BE6,BEQ90,BQ,GE+GB+BE,BEG周长的最小值为【点睛】本题重点考查平行四边形的性质、正方形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质、勾股定理、以及运用轴对称的性质求线段和的最小值问题的求解等知识与方法,深入探究与挖掘题中的隐含条件并且正确地作出辅助线是解题的关键,此题综合性强,难度大,属于考试压轴题3、(1)证明见详解;(2)与面积相等的平行四边形有、【分析】(1)根据三角形中位线定理可得:,依
23、据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形【详解】解:(1)D、E、F分别是AB、AC、BC的中点, 四边形DECF为平行四边形,四边形DECF为菱形;(2)D、E、F分别是AB、AC、BC的中点, ,且,四边形DEFB、DECF、ADFE是平行四边形,四边形EGCF是平
24、行四边形,与面积相等的平行四边形有、【点睛】题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键4、(1)证明过程见解析;(2)BG的长为4;(3)2或64或或6+4【分析】(1)连结BB1交CG于点M,交CD于点Q,证明四边形ABCD是正方形,再根据对称的性质得到CE垂直平分BB1,得到BCGB1CG(SSS),即可得解;(2)设BG交AD于点N,得到BCQCDE(ASA),得到CQDE5,BQCE5,再根据勾股定理得到BM,最后利用勾股定理计算即可;(3)根据点G的位置不同分4种情况进行讨论计算即可;【详解】(1)证明:如图1,连
25、结BB1交CG于点M,交CD于点Q,ADBC,ADBC,四边形ABCD是平行四边形,BCDC,BCD90,四边形ABCD是正方形,点B1与点B关于CE对称,CE垂直平分BB1,BCB1C,BGB1G,CGCG,BCGB1CG(SSS),CBGCB1G,DCB1C,CDB1CB1G,CBGCDB1(2)解:如图1,设BG交AD于点N,BCCDAD10,DEAD5,CDE90,CE,BCQCDEBMC90,CBQ90BCMDCE,BCQCDE(ASA),CQDE5,BQCE5,CMBQ,SBCQBQCMBCCQ,CM2,BM,ABCBAN90,GDN+CDB190,ABN+CBG90,GDNABN
26、,GNDANB,GDN+GNDABN+ANB90,BGB190,BGMB1GMBGB145,BMG90,BMGBGM45,GMBM4,BG,BG的长为4(3)解:如图1,由(2)得CM2,GM4,CG2+46,如图2,CHCG6,则CHGCGH45,GCH90,GH,BHGHBG642;如图3,HGCG6,且点H与点B在直线FB1的同侧,BHHGBG64;如图4,CHGH,则HCGHGC45,CHG90,CH2+GH2CG2,2GH2(6)2,GH3,BHBGGH43;如图5,HGCG6,且点H与点B在直线FB1的异侧,BHHG+BG6+4,综上所述,BH的长为2或64或或6+4,故答案为:2
27、或64或或6+4【点睛】本题主要考查了全等三角形的综合,勾股定理,垂直平分线的判定与性质,正方形的性质,准确分析计算是解题的关键5、(1)BPCE,CEBC;(2)仍然成立,见解析;(3)31【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明BAPCAE即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明BAPCAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由BCE90,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论【详解】解:(1)如图1,连接AC,延长CE交AD于点
28、H,四边形ABCD是菱形,ABBC,ABC60,ABC是等边三角形,ABAC,BAC60;APE是等边三角形,APAE,PAE60,BAPCAE60PAC,BAPCAE(SAS),BPCE;四边形ABCD是菱形,ABPABC30,ABPACE30,ACB60,BCE60+3090,CEBC;故答案为:BPCE,CEBC;(2)(1)中的结论:BPCE,CEAD 仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,菱形ABCD,ABC60,ABC和ACD都是等边三角形,ABAC,BAD120,BAP120+DAP,APE是等边三角形,APAE,PAE60,CAE60+60+DAP120+
29、DAP,BAPCAE,ABPACE(SAS),BPCE,ACEABD30,DCE30,ADC60,DCE+ADC90,CHD90,CEAD;(1)中的结论:BPCE,CEAD 仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EFAP于F,四边形ABCD是菱形,ACBD BD平分ABC,ABC60,AB2,ABO30,AOAB,OBAO3,BD6,由(2)知CEAD,ADBC,CEBC,BE2,BCAB2,CE8,由(2)知BPCE8,DP2,OP5,AP2,APE是等边三角形,SAEP(2)27,如图4中,当点P在DB的延长线上时,同法可得AP2,SAEP(2)231,【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题