《2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组综合测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组综合测评试题(含详解).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、都是实数,且ab+xB-a-bC3a2的解集为x,则a的取值范围是( )Aa1Ba1Da-15、若不等式3x1,两边同时除以3,得()AxBxCxDx6、已知,则一定有,“”中应填的符号是( )ABCD7、由xy得axay的条件应是( )Aa0Ba0Ca0Db08、对于不等式4x+7(x-2)8不是它的解的是( )A5B4C3D29、如果xy,则下列不等式正确的是()Ax1y1B5x5yCD2x2
2、y10、一元一次不等式组的解是()Ax2Bx4C4x2D4x2二、填空题(5小题,每小题4分,共计20分)1、代数式的值不小于代数式的值,则的取值范围是_2、若关于x的不等式组的整数解共有5个,则a的取值范围_3、解不等式:x32x的解集是 _4、如果,那么_05、不等式的解是_三、解答题(5小题,每小题10分,共计50分)1、解不等式(组)(1)(2)2、解不等式组,并把解集在数轴上表示出来3、 “六一”儿童节,学校组织部分少先队员去植树学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵4、为了打造区域中心城市,实现跨越式发展,某市
3、花城新区建设正按投资计划有序推进花城新区建设工程部因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机的有关信息如下表所示:型号租金(单位:元/台时)挖掘土石方量(单位:m3/台时)甲型10060乙型12080(1)用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机分别需要租多少台?(2)每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案(每种型号的挖掘机至少租一台)?5、解不等式组,并写出所有整数解(不画数轴)-参考答案-一、单选题1
4、、C【分析】根据不等式的性质逐一判断选项,即可【详解】解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C【点睛】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变2、D【分析】根据不等式的基本性质判断即可【详解】解:A选项,ab,故该选项不符合题意;B选项,ab,3a3b,故该选项不符合题意;C选项,ab,3a3b,故该选项不符合题意;D选项,
5、ab,a3b3,故该选项符合题意;故选:D【点睛】本题考查了不等式的基本性质,掌握不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键3、C【分析】先解关于y的不等式组可得解集为,根据关于y的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax3(x+1)1x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案【详解】解:,解不等式,得:,解不等式,得:,不等式组的解集为,关于y的不等式组有解,解得:,ax3(x+1)1x,
6、ax3x31x,ax3xx13,(a2)x4,关于x的方程ax3(x+1)1x有整数解,a为整数,a24,2,1,1,2,4,解得:a6,4,3,1,0,2,又,a4,3,1,0,2,符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键4、B【分析】根据不等式的性质可得,由此求出的取值范围【详解】解:不等式的解集为,不等式两边同时除以时不等号的方向改变,故选:B【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变5、A【分析】根据题意直接利用不等式的性质进行计算即
7、可得出答案【详解】解:不等式3x1,两边同时除以3,得x故选:A【点睛】本题主要考查不等式的基本性质解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变特别是在系数化为1这一个过程中要注意不等号的方向的变化6、B【分析】根据不等式的性质:不等式两边同时乘以同一个负数,不等号的方向改变,即可选出答案【详解】解:根据不等式的性质,不等式两边都乘同一个负数,不等号的方向改变ab,-4a-4b故选:B【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解
8、题的关键7、B【分析】由不等式的两边都乘以 而不等号的方向发生了改变,从而可得.【详解】解: 故选B【点睛】本题考查的是不等式的性质,掌握“不等式的两边都乘以同一个负数,不等号的方向改变”是解本题的关键.8、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x5时,4x+7(x-2)418,当x4时,4x+7(x-2)308,当x3时,4x+7(x-2)198,当x2时,4x+7(x-2)8故知x2不是原不等式的解故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是
9、不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.9、C【分析】根据不等式的性质解答不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变【详解】解:Axy,x1y1,故本选项不符合题意;Bxy,5x5y,故本选项不符合题意;Cxy,故本选项符合题意; Dxy,2x2y,故本选项不符合题意;故选:C【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键10、C【分析】分别求出各不等式的解集,再求出其公共解集即可【详解】解:
10、,解不等式得,解得:,解不等式得,解得:,故不等式组的解集为:故选:C【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键二、填空题1、【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得【详解】解:由题意得,解得,故答案为:【点睛】本题主要考查解不等式,熟练掌握解一元一次不等式的基本步骤是解题的关键2、1a0【分析】先求出不等式组的解集,再根据已知条件得出1a0即可【详解】解:,解不等式,得x5,解不等式,得xa,所以不等式组的解集是ax5,关于x的不等式组的整数解共有5个,1a0,故答案为:1a0【点睛】本题考查了解
11、一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键3、【分析】先移项,然后系数化为1,即可求出不等式的解集【详解】解:,故答案为:【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键4、【分析】由可得:异号,又与同号,所以而,即可求解【详解】解:由可得:异号,又与同号,所以而,所以,故答案为:【点睛】本题考查不等式的性质,得出与同号是解题关键5、【分析】分别求得不等式的解集,然后取公共解即可【详解】解:解不等式得:解不等式得:所以不等式的解集为:故答案为【点睛】此题考查了不等式组的求解,解题的关键是求解不等式的解集,然后取公共解三
12、、解答题1、(1);(2)【解析】【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可【详解】(1) , ,; (2) 由:, 由:, 【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键2、2x1,图见解析【解析】【分析】分别解不等式组中的两个不等式,再取两个不等式的解集的公共部分,再在数轴上表示不等式组是解集即可.【详解】解:,解不等式得:x1,解不等式得:x2,不等式组的解集为:2x1在数轴上表示不等式组的解集为:【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握解不等式组的方法是
13、解本题的关键.3、121棵【解析】【分析】设有名学生,根据题意列出不等式关系,求解即可【详解】解:设有名学生,这批树苗总共有棵,根据题意,得:,不等式的解集是:;不等式的解集是:,所以,不等式组的解集是:,因为x是整数,所以,(棵),答:这批树苗共有121棵【点睛】此题考查了一元一次不等式组的应用,解题的关键是理解题意,正确列出不等式组进行求解4、(1)甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台【解析】【分析】(1)设甲种型号的挖掘机需要租台,从而可得乙种型号的挖掘机需要租台,再根据“恰好完成每小时的挖掘量”
14、建立方程,解方程即可得;(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,根据“每小时支付的租金不超过850元,又恰好完成每小时的挖掘量”建立不等式和方程,再结合为正整数进行分析即可得【详解】解:(1)设甲种型号的挖掘机需要租台,则乙种型号的挖掘机需要租台,由题意得:,解得,答:甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,由题意得:,解得,因为为正整数,所以分以下四种情况进行讨论:当时,符合题意;当时,不符题意,舍去;当时,不符题意,舍去;当时,不符题意,舍去;综上,共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台【点睛】本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键5、不等式组的解集为:;整数解为:-1,0,1,2【解析】【分析】分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可【详解】解:, 解不等式得:,解不等式得:,不等式组的解集为:,不等式组的整数解为:-1,0,1,2【点睛】本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错