《2022年最新京改版九年级数学下册第二十三章-图形的变换专题训练试题.docx》由会员分享,可在线阅读,更多相关《2022年最新京改版九年级数学下册第二十三章-图形的变换专题训练试题.docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列所述图形中,不是轴对称图形的是( )A矩形B平行四边形C正五边形D正三角形2、如图,等边中,D为AC中点,点
2、P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D123、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为()A(2,5)B(2,5)C(2,5)D(5,2)4、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB ,OD4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )A(,)B(,)C(,)D(,)5、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )ABCD6、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是()A(-1,-2)B(-2,1)C
3、(2,1)D(2,-1)7、如图,绕点逆时针旋转到的位置,已知,则等于( )ABCD8、如图,直径AB6的半圆,绕B点顺时针旋转30,此时点A到了点A,则图中阴影部分的面积是()ABCD39、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A(-4,-3)B(4,3)C(4,-3)D(-4,3)10、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申
4、报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,点A(a+1,2)、B(3,b-1)两点关于x轴对称,则C(a,b)的坐标是_2、如图,在平面直角坐标系中,等边ABC与等边BDE是以原点为位似中心的位似图形,且相似比为,点A、B、D在x轴上,若等边BDE的边长为6,则点C的坐标为 _3、如图,在中,将绕点逆时针方向旋转100得到,则的度数为_4、如图,在RtABC中,C90,ABC30,AC3,将RtABC绕点A逆时针旋转得到RtABC,使点C落在AB边上,连接BB,
5、则BB的长度为 _5、如图,RtABC中,ACB=90,AC=BC=2,点P是AB上一动点,连接CP,将线段CP绕点C顺时针旋转90得到线段CQ,连接PQ,AQ,则PAQ面积的最大值为_三、解答题(5小题,每小题10分,共计50分)1、已知矩形ABCD,AB=6,BC=10,以BC所在直线为x轴,AB所在直线为y轴,建立如图所示的平面直角坐标系,在CD边上取一点E,将ADE沿AE翻折,点D恰好落在BC边上的点F处(1)求线段EF长;(2)在平面内找一点G,使得以A、B、F、G为顶点的四边形是平行四边形,请直接写出点G的坐标;如图2,将图1翻折后的矩形沿y轴正半轴向上平移m(m0)个单位,若以A
6、、O、F、G为顶点的四边形为菱形,请求出m的值并写出点G的坐标2、如图,在平面直角坐标系中,ABC的三个项点坐标分别为A(1,1)、B(3,4)、C(4,2)(1)在图中画出ABC关于y轴对称的A1B1C1;(2)通过平移,使B1移动到原点O的位置,画出平移后的A2B2C2(3)在ABC中有一点P(a,b),则经过以上两次变换后点P的对应点P2的坐标为_3、如图,在正方形中,射线与边交于点,将射线绕点顺时针旋转,与的延长线交于点,连接(1)求证:;(2)若,直接写出的面积4、如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG2OD,OE2OC,然后以OG、OE为
7、邻边作正方形OEFG,连结AG、DE(1)猜想AG与DE的数量关系,请直接写出结论;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,旋转角为(0180),得到图2,请判断:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在正方形OEFG旋转过程中,请直接写出:当30时,OAG的度数;当AEG的面积最小时,旋转角的度数5、抛物线yax2bx2(a0)与x轴交于点A(1,0),B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)如图1,抛物线的对称轴与x轴相交于点H,连接AC,BCABC绕点B顺时针旋转一定角度后落在第一象限,当点C的对应点C1落在抛物线的
8、对称轴上时,求此时点A的对应点A1的坐标;(3)如图2,过点C作轴交抛物线于点E,已知点D在抛物线上且横坐标为,在y轴左侧的抛物线上有一点P,满足PDCEDC,求点P的坐标-参考答案-一、单选题1、B【分析】由轴对称图形的定义对选项判断即可【详解】矩形为轴对称图形,不符合题意,故错误;平行四边形不是轴对称图形,符合题意,故正确; 正五边形为轴对称图形,不符合题意,故错误;正三角形为轴对称图形,不符合题意,故错误;故选:B【点睛】本题考查了轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形识别轴对称图形的关键是寻找对称轴,图形两部分折叠后可
9、重合2、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型3、C【分析】关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.【详解】解:点P(2,5)关于y轴对称的点的坐标为: 故选:C【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵
10、坐标不变”是解本题的关键.4、B【分析】由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D点坐标为(4,0),则C点坐标为(1,)【详解】四边形ABCD为矩形AB=CD=,DOC=60在中有则C点坐标为(2,0),D点坐标为(2,)又旋转后D点落在x轴的正半轴上可看作矩形ABCD中绕点O顺时针旋转了60得到如图所示,过C作y轴平行线交x轴于点M其中DOC=DOC=60,OMC=90,OC=OC=2OM=1,MC=C坐标为(1,)故选:B【点睛】本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60是解题的关键5、C【分析】根据关于轴对称
11、的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键6、B【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是故选B【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析7、D【分析】根据题意找到旋转角,根据即可求解【详解】解:绕点逆时针旋转到的位置,故选D【点
12、睛】本题考查了旋转的性质,几何图形中角度的计算,找到旋转角是解题的关键8、D【分析】阴影面积为旋转后为直径的半圆面积加旋转后扇形面积减去旋转前为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可【详解】直径AB6的半圆,绕B点顺时针旋转30又AB=6,ABA=30故答案为:D【点睛】本题考查了扇形面积公式的应用,扇形面积公式为,由旋转的性质得出阴影面积为扇形面积是解题的关键9、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标【详解】解: A(-4,3) ,关于y轴对称点B的坐标为(4,3)故答案为:B【点睛】本题主要是考查了y轴对称的点的
13、坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键10、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键二、填空题1、(2,-1)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而可得答案【详解】解:点A(a+1,2)、B(3,b-1)两点关于x轴对称,a+1=3,b-1=-2,解得:a=2,b=-1,C的坐标是(2,-1),故答案为
14、:(2,-1)【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标变化规律2、【分析】作CFAB于F,根据位似图形的性质得到BCDE,根据相似三角形的性质求出OA、AB,根据等边三角形的性质计算,得到答案【详解】解:作CFAB于F,等边ABC与等边BDE是以原点为位似中心的位似图形,BCDE,OBCODE,ABC与BDE的相似比为,等边BDE边长为6,解得,BC=2,OB=3,OA=1,CA=CB,CFAB,AF=1,由勾股定理得,OF=OA+AF=2,点C的坐标为故答案为:【点睛】本题考查的是位似变换的概念和性质、等边三角形的性质、掌握位似变换的概念、相似三角形的性质是解题的关键
15、3、70【分析】由旋转的性质可得,然后问题可求解【详解】解:由旋转的性质得:,;故答案为70【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质是解题的关键4、6【分析】利用含30角的直角三角形的性质可得AB6,BAC60,根据旋转可证ABB是等边三角形,从而BBAB6【详解】解:在RtABC中,C90,ABC30,BAC60,AB2AC6,将RtABC绕点A逆时针旋转得到RtABC,BABCAC60,ABAB,ABB是等边三角形,BBAB6故答案为:6【点睛】本题主要考查了图形的旋转,等边三角形判定和性质,直角三角形的性质,熟练掌握相关知识点是解题的关键5、1【分析】先证明BCP=ACP,然后
16、利用SAS证明BPCAQC得到B=CAQ,BP=AQ,从而推出PAQ =90,再利用勾股定理求出,设BP=AQ=x,则,则,最后根据二次函数的性质求解即可【详解】解:如图,将线段CP绕点C顺时针旋转90得到线段CQ,PCQ=90,CP=CQ,ACP+ACQ=90,又ACB=90,BCP+ACP=90,BCP=ACP,AC=BC,BPCAQC(SAS),B=CAQ,BP=AQ,BC=AC=2,B=CAQ=BAC=45,PAQ=BAC+CAQ=90,在RtABC中,由勾股定理AB=,设BP=AQ=x,则,函数开口向下,函数有最大值,当时,故答案为:1【点睛】本题考查了等腰直角三角形的性质、旋转的性
17、质、勾股定理,全等三角形的性质与判定,二次函数的性质等知识点,掌握等腰直角三角形的性质、旋转的性质、勾股定理,二次函数的性质等知识点是解题关键三、解答题1、(1) ;(2)点G的坐标为(8,6)或(8,6)或(8,6);或或【分析】(1)由矩形的性质得ADBCOC10,CDABOA6,AOCECF90,由折叠性质得EFDE,AFAD10,则CE6EF,由勾股定理求出BFOF8,则FCOCOF2,在RtECF中,由勾股定理得出方程,解方程即可;(2)分三种情况,当AB为平行四边形的对角线时;当AF为平行四边形的对角线时;当BF为平行四边形的对角线时,分别求解点G的坐标即可;分三种情况讨论,当为对
18、角线时,由菱形的性质得OAAF10,则矩形ABCD平移距离mOAAB4,即OB4,设FG交x轴于H,证出四边形OBFH是矩形,得FHOB4,OHBF8,则HG6,如图,当为菱形的对角线时,当为菱形的对角线时,结合矩形与菱形的性质同理可得出答案【详解】解:(1)四边形ABCD是矩形,ADBCOC10,CDABOA6,AOCECF90,由折叠性质得:EFDE,AFAD10,CECDDECDEF6EF,由勾股定理得:BFOF,FCOCOF1082,在RtECF中,由勾股定理得:EF2CE2+FC2,即:EF2(6EF)2+22,解得:EF;(2)如图所示:当AB为平行四边形的对角线时,AGBF8,点
19、G的坐标为:(8,6);当AF为平行四边形的对角线时,AGBF8,点G的坐标为:(8,6);当BF为平行四边形的对角线时,FGAB6,点G的坐标为:(8,6);综上所述,点G的坐标为(8,6)或(8,6)或(8,6);如图,当为菱形的对角线时,四边形AOGF为菱形,OAAF10,矩形ABCD平移距离mOAAB1064,即OB4,设FG交x轴于H,如图所示:,轴,FBOBOHOHF90,四边形OBFH是矩形,FHOB4,OHBF8,HG1046,点G的坐标为:(8,6)如图,当为菱形的对角线时,则 如图,当为菱形的对角线时, 同理可得: 且 解得: 所以即 综上:平移距离与的坐标分别为:或或【点
20、睛】本题是四边形综合题目,考查了矩形的判定与性质、菱形的判定与性质,坐标与图形性质、平行四边形的性质、勾股定理、折叠变换的性质、平移的性质等知识;熟练掌握矩形的性质和折叠的性质是解题的关键2、(1)见解析;(2)见解析;(3)【分析】(1)关于y轴对称可知,对应点纵坐标不变,横坐标互为相反数,由此可作出;(2)由移动到原点O的位置可知,对应点向右平移了3个单位,向下平移了4个单位,由此可作出;(3)根据两次变换可知,点P先关于y轴对称,再进行平移,即先纵坐标不变,横坐标互为相反数,再向右平移了3个单位,最后向下平移了4个单位,即可得到的坐标【详解】(1)如图所示,即为所作;(2)如图所示,即为
21、所作;(3)点关于y轴对称得,向右平移3个单位,再向下平移4个单位得故答案为:【点睛】本题考查平移与轴对称变换,掌握平移和轴对称的性质是解题的关键3、(1)见解析;(2)8【分析】(1)根据SAS证明即可得到结论;(2)根据直角三角形的性质求出AE=4,再根据三角形面积公式计算即可【详解】解:(1)四边形ABCD是正方形AD=AB=BC=CD, 在和中, (2)由(1)得, 是等腰直角三角形,在RtADE中,AE=2DE=4AF=4【点睛】此题考查了正方形的性质、全等三角形的判定与性质、旋转变换的性质、三角形的面积以及直角三角形的性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键4、
22、(1)AG=DE;(2)成立,理由见解析;(3)90,135【分析】(1)证明AOGDOE(SAS),得出AG=DE即可;(2)先证明AOG=DOE,再证明AOGDOE(SAS),得出AG=DE即可;(3)过点E作EMAC交AC的延长线于点M,证明AOGDOE,则可得出答案;作AHGE于H,连接OH,则当O、A、H在同一直线上时OH最小,然后根据旋转的性质可得出答案【详解】(1)证明:点O是正方形ABCD两对角线的交点,OA=OD,OAOD,AOG=DOE=90,四边形OEFG是正方形,OG=OE,在AOG和DOE中,AOGDOE(SAS),AG=DE;(2)成立,理由:点O是正方形ABCD两
23、对角线的交点,OA=OD,OAOD,AOD=DOC=90,DOG=COE=,AOG=DOE,四边形OEFG是正方形,OG=OE,在AOG和DOE中,AOGDOE(SAS),AG=DE;(3)过点E作EMAC交AC的延长线于点M,则EMO=90,由旋转的性质可知MOE=DOG=30,MOE=90-30=60,点O是正方形ABCD两对角线的交点,OAOD,AOG=90-30=60,AOG =MOE,在AOG和DOE中,AOGDOE(SAS),OAG=EMO=90;作AHGE于H,连接OH, OG2OD,OE2OC,OG、OE为定值,GE=是定值,当AH最小时,AEG的面积最小,当O、A、H在同一直
24、线上时OH最小,OA为定值,此时AH最小,即AEG的面积最小,此时的旋转角=HOG+AOD=45+90=135【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,旋转的性质等知识,熟练掌握旋转的性质及证明三角形全等是解决问题的关键5、(1);(2)(3,4);(3)(,)【分析】(1)把A(1,0),B(3,0)代入抛物线解析式利用待定系数法求解二次函数的解析式即可;(2)如图,先求解C(0,2),对称轴为直线,可得BHCO2结合旋转得BC1BC ,证明RTBC1HRTCBO(HL),再证明旋转角A1BAC1BC90,从而可得答案;(3)先求解D(,),E(2,2),如图,过点D
25、作DGCE交CE的延长线于点G,证明CGDG,可得ECDGDC45 ,如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P,证明QCDECD,可得QCEC2,可得Q(0,0),再求解直线DQ的解析式为,联立 ,再解方程组可得答案.【详解】解:(1)将A(1,0),B(3,0)代入抛物线解析式得 解得 抛物线的解析式为(2)抛物线的解析式为,A(1,0),B(3,0)C(0,2),对称轴为直线 BHCO2由旋转得BC1BC 则RTBC1HRTCBO(HL) C1BHBCOC1BCC1BHOBCBCOOBC90旋转角A1BAC1BC90,即A1Bx轴 A1BBA4,B(3,0)A1(3,4
26、)(3)抛物线的解析式为,D的横坐标为当x时,y,则D(,)轴,C(0,2),对称轴为直线x1E(2,2) 如图,过点D作DGCE交CE的延长线于点G, CGDG,ECDGDC45 如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P轴 ,QCE90QCDECD45CDCD,QCDECD(ASA)QCEC2,C(0,2),Q(0,0)D(,),设直线 解得: 直线DQ的解析式为则 ,消去得: 解得: 当时, 当时, 所以方程组的解为:或,【点睛】本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.