《2022年最新强化训练北师大版七年级数学下册第五章生活中的轴对称同步测评试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版七年级数学下册第五章生活中的轴对称同步测评试卷(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面四个图形是轴对称图形的是( )ABCD2、如图所示,在中,平分交于点D,则的度数是( )ABCD3、如图,四边
2、形ABCD是轴对称图形,直线AC是它的对称轴,若BAC85,B25,则BCD的大小为()A150B140C130D1204、如图,在中,是上一点,将沿折叠,使点落在边上的处,则等于( )ABCD5、在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中轴对称图形是( )ABCD6、点P( 5,3 )关于y轴的对称点是 ( )A(5, 3 )B(5,3)C(5,3 )D(5,3 )7、如图把一张长方形的纸按如图那样折叠后,B、D两点分别落在了B、D点处,若AOB=6128, 则BOG的度数为( )A596B5916C574D57448、下面四个图形中,是轴对称图形的是()ABCD9、下列图形
3、是轴对称图形的是( )ABCD10、下面是四家医院标志的图案部分,其中是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,方格纸中的每个小方格的边长为1,ABC是格点三角形(即顶点恰好是小方格的顶点)若格点ACP与ABC全等(不与ABC重合),则所有满足条件的点P有_个2、如图,三角形纸片中,沿过点的直线折叠这个三角形,使点落在边上的处,折痕为,则周长为_3、如图,从标有数字1,2,3,4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是_4、如图,若AD是的角平分线,则_或_5、如图,把一张长方形的纸条按如图那样折
4、叠后,若量得DBA40,则ABC的度数为 _度三、解答题(5小题,每小题10分,共计50分)1、图1是一张三角形纸片ABC将BC对折使得点C与点B重合,如图2,折痕与BC的交点记为D(1)请在图2中画出ABC的BC边上的中线(2)若AB=11cm、AC=16cm,求ACD与ABD的周长差2、如图,是的角平分线, 交于点E,交 于点F图中与有什么关系?为什么?3、如图,在正方形网格中,点A、B、C、M、N都在格点上(1)作ABC关于直线MN对称的图形ABC;(2)作出AB边上的中线;(3)若每个小正方形边长均为1,则ABC的面积=_4、如图,在正方形网格中,点A、B、C、M、N都在格点上(1)作
5、ABC关于直线MN对称的图形ABC;(2)若网格中最小正方形的边长为1,则ABC的面积为 ;(3)点P在直线MN上,当PAC周长最小时,P点在什么位置,在图中标出P点5、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,涂黑其中三个方格,使剩下的部分成为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为涂黑部分)请在图中画出4种不同的设计方案,将每种方案中三个方格涂黑(每个33的正方形方格画一种,例图除外,并且画上对称轴)-参考答案-一、单选题1、B【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个
6、图形叫做轴对称图形,这条直线叫做对称轴,根据此概念进行分析【详解】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合2、D【分析】根据三角形外角的性质可求得BAD的度数,由角平分线的性质可求得BAC的度数【详解】ADC是ABD的一个外角ADC=B+BADBAD=ADC B=7030=40平分BAC=2BAD=240=80故选:D【点睛】本题考查了三角形外角的性质及角平分线的性质,掌握这两
7、个性质是关键3、B【分析】根据三角形内角和的性质可求得,再根据对称的性质可得,即可求解【详解】解:根据三角形内角和的性质可求得由轴对称图形的性质可得,故选:B【点睛】此题考查了三角形内角和的性质,轴对称图形的性质,解题的关键是掌握并利用相关基本性质进行求解4、D【分析】先根据三角形内角和定理求出B的度数,再由图形翻折变换的性质得出CED的度数,再由三角形外角的性质即可得出结论【详解】解:在RtACB中,ACB=90,A=25,B=90-25=65,CDE由CDB折叠而成,CED=B=65,CED是AED的外角,ADE=CED-A=65-25=40故选:D【点睛】本题考查了三角形内角和定理,翻折
8、变换的性质,根据题意得出ADE=CED-A是解题关键5、C【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键6、B【分析】根据两点关于y轴对称的特征是两点的横坐标互为相反数,纵坐标不变即可求出点的坐标【详解】解:所求点与点P(5,3)关于y轴对称,所求点的横坐标为5,纵坐标为3,点P(5,3)关于y轴的对称点是(5,3)故选B【
9、点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同7、B【分析】根据翻折的性质可得BOGBOG,再表示出AOB,然后根据平角等于180列出方程求解即可【详解】解:由翻折的性质得,BOGBOG,AOB=6128,AOBBOGBOG180,2BOG180612811832,解得BOG5916故选:B【点睛】本题考查了翻折变换的性质,熟记翻折的性质并根据平角等于180列出方程是解题的关键8、D【分析】根据轴对称图形的定义判断即可【详解】不是轴对称图形,A不符合题意;不是轴对称图形,B不符合题意;不是轴对称图形,C不符合题意;是轴对称图形,D符合题意;
10、故选D【点睛】本题考查了轴对称图形即沿直线折叠,直线两旁的部分能够完全重合的图形,熟记定义是解题的关键9、C【分析】根据轴对称图形的概念解答即可【详解】A不是轴对称图形,故本选项错误;B不是轴对称图形,故本选项错误;C是轴对称图形,故本选项正确;D不是轴对称图形,故本选项错误故选C【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、A【分析】根据轴对称图形的概念逐项判断解答即可【详解】是轴对称图形,选项正确;不是轴对称图形,选项错误;不是轴对称图形,选项错误;不是轴对称图形,选项错误;故选:【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称
11、轴,图形两部分折叠后能重合二、填空题1、3【分析】如图,把沿直线对折可得: 把沿直线对折,从而可得答案.【详解】解:如图,把沿直线对折可得: 把沿直线对折可得: 所以符合条件的点有3个,故答案为:3【点睛】本题考查的轴对称的性质,全等三角形的概念,掌握“利用轴对称的性质确定全等三角形”是解本题的关键.2、13【分析】由对折可得:再求解 从而可得答案.【详解】解:由对折可得: 故答案为:【点睛】本题考查的是轴对称的性质,根据轴对称的性质得到是解本题的关键.3、2【分析】根据轴对称图形的定义求解即可轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:由轴对称图形
12、的定义可得,应该拿走的小正方形的标号是2故答案为:2【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形4、= BAD CAD 【分析】根据角平分线的定义进行求解即可【详解】解:AD是的角平分线,或,故答案为:=,BAC,BAD,CAD【点睛】本题主要考查了角平分线的定义,解题的关键在于能够熟记角平分线的定义5、70【分析】由DBA的度数可知ABE度数,再根据折叠的性质可得ABCEBCABE即可【详解】解:延长DB到点E,如图:DBA40,ABE180DBA18040140,又把一张长方形的纸条按如
13、图那样折叠,ABCEBCABE70,故答案为:70【点睛】本题主要考查了折叠的性质和邻补角的定义,属于基础题目,得到ABCABE是解题的关键三、解答题1、(1)见解析;(2)5厘米【分析】(1)由翻折的性质可知BD=DC,然后连接AD即可;(2)由BD=DC可知ABD与ACD的周长差等于AB与AC的差【详解】解:(1)连接AD,由翻折的性质可知:BD=DC,AD是ABC的中线如图所示: (2)BD=DC,ADC的周长-ADB的周长=AC+DC+AD-(AD+AB+DC)=AC-AB=16-11=5cm【点睛】本题主要考查的是翻折的性质,由翻折的性质得到BD=DC是解题的关键2、相等,理由见解析
14、【分析】先根据角平分线的定义得出,再由平行线的性质即可得出结论【详解】解:相等理由:是的角平分线,,【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等3、(1)见解析;(2)见解析;(3)3【分析】(1)分别作点A,B,C关于直线MN对称的点A,B,C,连接AB,BC,AC,即可画出ABC;(2)取格点EF,连接EF交AB于点D,连接CD即为所求;(3)观察图形,找出ABC的底和高,利用三角形的面积公式即可求出结论【详解】(1)如图,ABC即为所求;(2)如图,CD即为所求;(3)ABC的面积为:32=3【点睛】本题主要考查了利用轴对称变换作图,以及全等三角形的判定和性质
15、,解决本题的关键是掌握轴对称的性质准确作出对应点4、(1)见解析;(2)3;(3)见解析【分析】(1)根据轴对称的性质即可作ABC关于直线MN对称的图形ABC;(2)根据网格中最小正方形的边长为1,即可求ABC的面积;(3)根据两点之间线段最短,作点A关于MN的对称点A,连接AC交直线MN于点P,此时PAC周长最小【详解】解:(1)如图,ABC即为所求;(2)ABC的面积为:32=3;(3)因为点A关于MN的对称点为A,连接AC交直线MN于点P,此时PAC周长最小点P即为所求【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称的性质和两点之间线段最短5、见解析【分析】根据轴对称图形的定义求解即可轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:如图所示,【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形