《2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专项测评试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专项测评试卷(无超纲带解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD2、在“回收”、“节水”、“绿色食品”、“低碳”四个标
2、志图案中轴对称图形是( )ABCD3、下列图案是轴对称图形的是()ABCD4、如图1,北京2022年冬季奥林匹克运动会会徽(冬梦)主要由会徽图形、文字标志、奥林匹克五环标志三个部分组成,图形主体形似汉字“冬”的书法形态;如图2,冬残奥会会徽(飞跃)主要由会徽图形、文字标志、国际残奥委会标志三部分组成,图形主体形似汉字“飞”的书法字体以下图案是会徽中的一部分,其中是轴对称图形的为( )ABCD5、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联
3、合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD6、下列冰雪运动项目的图标中,是轴对称图形的是()ABCD7、下面四个图形中,是轴对称图形的是()ABCD8、在平面直角坐标系中,点P(2,3)关于x轴对称的点是()A(2,3)B(2,3)C(3,2)D(2,3)9、下面4个图形中,不是轴对称图形的是( )ABCD10、下列所述图形中,不是轴对称图形的是( )A矩形B平行四边形C正五边形D正三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中
4、,点D,E分别在边AB,BC上,点A与点E关于直线CD对称若AB8cm,AC10cm,BC14cm,则DBE的周长为 _2、如图,在中,是中线,是角平分线,是高填空:(1)_;(2)_;(3)_;(4)_3、如图,ABC中,点D在边BC上,将点D分别以AB、AC为对称轴,画出对称点E、F,连接AE、AF根据图中标示的角度,可知EAF_4、如图的三角形纸片中,AB8,BC6,AC5,沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,折痕为BD,则AED的周长_5、如图,在中,将其折叠,是点落在边上的点,折痕为(1)的度数为_(2)的度数为_三、解答题(5小题,每小题10分,共计50分)
5、1、求证:全等三角形的对应边上的角平分线相等(把图形补充完整,并写出已知、求证和证明)2、(1)如图1,直线两侧有两点A,B,在直线上求一点C,使它到A、B两点的距离之和最小(作法不限,保留作图痕迹,不写作法)(2)知识拓展:如图2,直线同侧有两点A,B,在直线上求一点C,使它到A,B两点的距离之和最小(作法不限,保留作图痕迹,不写作法)3、如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上(1)在图中画出与ABC关于直线l成轴对称的A1B1C1;(2)A1B1C1的面积为 _;(3)线段CC1被直线l _4、如图是三个55的正方形网格,请你用三种不同的方法
6、分别把每幅图中的一个白色小正方形涂上阴影,使每幅图中的阴影部分成为一个轴对称图形5、已知,在如图所示的网格中建立平面直角坐标系后,ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(2,4)(1)画出ABC关于y轴的对称图形A1B1C1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)在第一象限内找一点P,使得P到AB、AC的距离相等,且PAPB;在x轴上找一点Q,使得QAB的周长最小,则Q点的坐标(_,_)-参考答案-一、单选题1、D【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解
7、:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D【点睛】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键2、C【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键3、D【分析】根据轴对称图形的定义,即是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形叫轴对称图形判断即可;【详解】由已知图形可知,
8、是轴对称图形;故选D【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键4、B【分析】结合轴对称图形的概念求解即可如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称【详解】解:A不是轴对称图形,本选项不符合题意;B是轴对称图形,本选项符合题意;C不是轴对称图形,本选项不符合题意;D不是轴对称图形,本选项不符合题意故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重
9、合的图形,据此判断各个选项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键6、D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论【详解】解:A不是轴对称图形,故本选项不合题意;B不是轴对称图形,故本选项不合题意;C不是轴对称图形,故本选项不合题意; D是轴对称图形,故本选项符合题意; 故选:D【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合7、D【分析
10、】根据轴对称图形的定义判断即可【详解】不是轴对称图形,A不符合题意;不是轴对称图形,B不符合题意;不是轴对称图形,C不符合题意;是轴对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形即沿直线折叠,直线两旁的部分能够完全重合的图形,熟记定义是解题的关键8、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论【详解】解:点P(2,3)关于x轴对称的点的坐标为(2,3)故选A【点睛】本题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解题的关键9、D【分析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、矩形是轴对称图形,故本选
11、项不符合题意;B、菱形是轴对称图形,故本选项不符合题意;C、正方形是轴对称图形,故本选项不符合题意;D、平行四边形不是轴对称图形,故本选项符合题意故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、B【分析】由轴对称图形的定义对选项判断即可【详解】矩形为轴对称图形,不符合题意,故错误;平行四边形不是轴对称图形,符合题意,故正确; 正五边形为轴对称图形,不符合题意,故错误;正三角形为轴对称图形,不符合题意,故错误;故选:B【点睛】本题考查了轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形识
12、别轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题1、【分析】根据对称的性质可得,进而可得的长,根据三角形的周长公式计算即可求得DBE的周长【详解】解:点A与点E关于直线CD对称, BC14DBE的周长为故答案为:【点睛】本题考查了轴对称的性质,理解对称的性质是解题的关键2、#【分析】根据三角形中线的定义、角平分线的定义及三角形的高可直接求解各个小问【详解】解:(1)是中线,;故答案为,;(2)是角平分线,故答案为,;(3)是高,故答案为;(4)由题意得:;故答案为【点睛】本题主要考查三角形的中线、角平分线及高线,熟练掌握三角形的中线、角平分线及高线的定义是解题的关键3、106【
13、分析】连接AD,根据轴对称的性质求出,再根据三角形的内角和定理求出,最后应用等价代换思想即可求解【详解】解:如下图所示,连接AD点E和点F是点D分别以AB、AC为对称轴画出的对称点,故答案为:106【点睛】本题考查轴对称的性质,熟练掌握该知识点是解题关键4、7【分析】根据折叠的性质,可得BE=BC=6,CD=DE,从而AE=AB-BE=2,再由AED的周长AD+DE+AE,即可求解【详解】解:沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,BE=BC=6,CD=DE,AB8,AE=AB-BE=2,AED的周长AD+DE+AE=AD+CD+AE=AC+DE=5+2=7故答案为:7【点
14、睛】本题主要考查了折叠的性质,熟练掌握折叠前后对应线段相等,对应角相等是解题的关键5、 【分析】(1)根据折叠前后对应角相等即可得解;(2)先求出,再利用三角形外角定理计算即可;【详解】(1)将折叠后,是点落在边上的点,折痕为,;故答案是:(2),由(1)得:,;故答案是:【点睛】本题主要考查了直角三角形的性质,图形的折叠,三角形外角定理,准确计算是解题的关键三、解答题1、见解析【分析】根据命题写出已知、求证,然后根据全等三角形的性质和三角形的角平分线性质得出AB=DE,B=E,BAM=EDN,再根据全等三角形的判定定理ASA证明ABMDEM即可解答【详解】已知:如图,ABCDEF,AM、DN
15、分别是ABC、DEF的角平分线,求证:AM=DN证明:ABCDEF,AB=DE,B=E,BAC=EDF,AM、DN分别是ABC、DEF的角平分线,BAM= BAC,EDN=EDF,BAM=EDN,在ABM和DEN中,ABMDEM(ASA),AM=DN【点睛】本题考查命题、全等三角形的判定与性质、角平分线的性质,证明线段相等,一般转化为三角形全等,因此熟练掌握全等三角形的判定与性质是解答的关键2、(1)见解析;(2)见解析【分析】(1)根据两点之间线段最短,连接AB,交已知直线于点C即可;(2)根据两点之间线段最短,作A关于已知直线的对称点E,连接BE交已知直线于C,由此即可得出答案【详解】解:
16、(1)连接AB,交已知直线于点C,则该点C即为所求;(2)作点A关于已知直线的对称点E,连接BE交已知直线于点C,连接AC,BC,则此时C点符合要求【点睛】此题主要考查了平面内最短路线问题求法,熟练掌握轴对称图形的性质是解决本题的关键3、(1)见解析;(2)3;(3)垂直平分【分析】(1)分别作出B、C关于直线l的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算A1B1C1的面积;(3)根据轴对称的性质矩形判断【详解】解:(1)如图,A1B1C1为所作;(2)A1B1C1的面积=24-41-12-22=3;故答案为3;(3)C点与C1关于直线l对称,线段CC1被直线l垂直平
17、分故答案为:垂直平分【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的4、见解析【分析】根据轴对称图形的定义求解即可轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:如图所示,【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形5、(1)见详解;(2)见详解;2,0.【分析】(1)根据题意画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始,连接这些对称点,就得到原图形的轴对称
18、图形;(2)由题意作BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;由题意作点B关于x轴对称的点B,连接AB,交x轴于Q,则点Q即为所求根据直线AB的解析式即可得出点Q的坐标【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,作BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;如图所示,作点B关于x轴对称的点B,连接AB,交x轴于Q,则点Q即为所求,A(1,1),B(4,-2),可设直线AB为y=kx+b,则,解得:,y=-x+2,当y=0时,-x+2=0,解得x=2,此时点Q的坐标为(2,0)故答案为:2,0.【点睛】本题主要考查利用轴对称进行作图,解决问题的关键是掌握角平分线的性质,中垂线的性质以及待定系数法求一次函数解析式,解题时注意两点之间,线段最短