《备考特训2022年石家庄新华区中考数学第三次模拟试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《备考特训2022年石家庄新华区中考数学第三次模拟试题(含答案解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年石家庄新华区中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算: 0(5)=0+(5)=5; 534=512=7; 4
2、3()=4(1)=4; 122(1)2=1+2=3其中错误的有()A1个B2个C3个D4个2、下列说法中正确的个数是( )两点之间的所有连线中,线段最短;相等的角是对顶角;过一点有且仅有一条直线与己知直线平行;两点之间的距离是两点间的线段;若,则点为线段的中点;不相交的两条直线叫做平行线。A个B个C个D个3、分式方程有增根,则m为( )A0B1C3D64、已知等腰三角形的两边长满足+(b5)20,那么这个等腰三角形的周长为()A13B14C13或14D95、下列解方程的变形过程正确的是( )A由移项得:B由移项得:C由去分母得:D由去括号得:6、若一个三角形的三边长是三个连续的自然数,其周长m
3、满足10m20,则这样的三角形有()A2个B3个C4个D5个7、如图,在O中,直径CD弦AB,则下列结论中正确的是AAC=ABBC=BODCC=BDA=B0D8、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个设甲种陀螺单价为x元,根据题意列方程为( )ABCD9、如图,在中,D,E分别是边,上的点,若,则的度数为( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD10、如图,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图.这个拼成的长方形的长为30,宽为20,则图中部分的面积是()A6
4、0B100C125D150第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在下列实数(每两个3之间依次多一个“1”),中,其中无理数是_2、妈妈用10000元钱为小明存了6年期的教育储蓄,6年后能取得11728元,这种储蓄的年利率为_%3、关于x的一元二次方程(m5)x2+2x+2=0有实根,则m的最大整数解是_4、若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b -mcd=_.5、已知,那么它的余角是_,它的补角是_三、解答题(5小题,每小题10分,共计50分)1、硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和
5、5个底面现有19张硬纸板,裁剪时x张用A方法,其余用B方法(1)分别求裁剪出的侧面和底面的个数(用x的代数式表示)(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?2、如图,抛物线与轴交于两点,与轴交于点,直线与抛物线交于两点,与轴交于点,且点为;(1)求抛物线及直线的函数关系式;(2)点为抛物线顶点,在抛物线的对称轴上是否存点,使为等腰三角形,若存在,求出点的坐标;(3)若点是轴上一点,且,请直接写出点的坐标3、列方程解应用题:在足球比赛中,某队在已赛的11场比赛中保持连续不败,积25分已知胜一 线 封 密 内 号学级年名姓 线 封 密 外 场得3分,平一场得1分,负一场得0分,求该
6、队获胜场数4、如图是一座抛物线形的拱桥,拱桥在竖直平面内,与水平桥相交于A,B两点,拱桥最高点C到AB的距离为9m,AB36m,D,E为拱桥底部的两点,DEAB(1)以C为原点,以抛物线的对称轴为y轴建立直角坐标系,求出此时抛物线的解析式(忽略自变量取值范围)(2)若DE48m,求E点到直线AB的距离5、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购2018年年底小张的“熟客”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采
7、购了7200箱(1)求小张的“熟客们这两年向小张采购鱼卷的年平均增长率;(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的,由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元?-参考答案-一、单选题1、C【分析】根据有理数的减法法则可判断;先算乘法、再算减法,可判断;根据有理数的乘除运算法则可判断;根据有理数的混合运算法则可判断,进而可得答案.
8、【详解】解:,所以运算错误;,所以运算正确;43()=4()=,所以运算错误;122(1)2=121=3,所以运算错误综上,运算错误的共有3个,故选:C.【点睛】本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.2、D【分析】本题属于基础应用题,只需学生熟练掌握平面图形的基本概念,即可完成.【详解】两点之间的所有连线中,线段最短,正确;相等的角不一定是对顶角,但对顶角相等,故本小题错误;过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;两点之间线段的长度,叫做这两点之间的距离,故本小题错误;若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则
9、不是,故本小题错误;在同一平面内,不相交的两条直线叫做平行线,故本小题错误;所以,正确的结论有,共1个故选D【点睛】熟练掌握平面图形的基本概念 线 封 密 内 号学级年名姓 线 封 密 外 3、C【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的值,让最简公分母x30,得到x3,然后代入整式方程算出m的值【详解】解:方程两边都乘x3,得x+x-3m原方程有增根,最简公分母x30,解得x3,将x3代入x+x-3m,得m3,故m的值是3故选C【点睛】本题考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字
10、母的值4、C【分析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可【详解】解:根据题意得,a40,b50,解得a4,b5,4是腰长时,三角形的三边分别为4、4、5,4+485,能组成三角形,周长4+4+513,4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长4+5+514,所以,三角形的周长为13或14故选C【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键5、D【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项
11、要变号【详解】解析:A由移项得:,故A错误;B由移项得:,故B错误;C.由去分母得:,故C错误;D.由去括号得: 故D正确故选:D【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则6、B【解析】【分析】首先根据连续自然数的关系可设中间的数为x,则前面一个为x1,后面一个为x+1,根据题意可得10x1+x+x+120,再解不等式即可【详解】设中间的数为x,则前面一个为x1,后面一个为x+1,由题意得:10x1+x+x+120解得:3x6x为自然数,x=4,5,6故选B【点睛】本题考查了三角形的三边关系,关键是掌握三角
12、形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边7、B【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到C=BOD,从而可对各选项进行判断【详解】解:直径CD弦AB,弧AD =弧BD,C=BOD故选B【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程【详解】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据题意可得
13、:,故选:C【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程9、D【分析】根据,推出,再由,得到,利用直角三角形中两个锐角互余即可得出.【详解】,DEB+DEC=180, 线 封 密 内 号学级年名姓 线 封 密 外 ,又,即故选:D【点睛】本题考查了全等三角形的性质,直角三角形两个锐角和等于90,掌握全等的性质是解题的关键.10、B【分析】分析图形变化过程中的等量关系,求出变化后的长方形部分的长和宽即可【详解】解:如图:拼成的长方形的长为(a+b),宽为(a-b),解得a=25,b=5,长方形的面积=b(a-b)=5(25-5)
14、=100故选B【点睛】本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系二、填空题1、(每两个3之间依次多一个“1”),【分析】无理数:即无限不循环小数,据此回答即可【详解】解:,无理数有:(每两个3之间依次多一个“1”),故答案为:(每两个3之间依次多一个“1”),【点睛】此题考查了无理数的概念,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,(每两个之间一次多个)等形式2、2.88【分析】先设出教育储蓄的年利率为x,然后根据6年后总共能得本利和11728元,列方程求解【详解】解析:设年利率为,则由题意得,解得故答案为:
15、 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答3、m=4【详解】分析:若一元二次方程有实根,则根的判别式=b24ac0,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0详解:关于x的一元二次方程(m5)x2+2x+2=0有实根,=48(m5)0,且m50,解得m5.5,且m5,则m的最大整数解是m=4故答案为m=4点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等的实数根;(2)=0,方程有两个相等的实数根;(3)0方程没有实数根4、-1或1【分析
16、】由a、b互为相反数,c、d互为倒数,m的绝对值是1得出a+b=0、cd=1,m=1,代入计算即可【详解】解:a、b互为相反数,c、d互为倒数,m的绝对值是1,a+b=0、cd=1,m=1,当m=1时,3a+3b -mcd=3(a+b)-mcd=0-1= -1,当m=-1时,3a+3b -mcd=3(a+b)-mcd=0-(-1)= 1故答案为:-1或1【点睛】本题考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键5、 【分析】根据余角、补角的性质即可求解【详解】解:,故答案为,【点睛】此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键三、解
17、答题1、(1)裁剪出的侧面的个数为个,底面的个数为个;(2)30个【分析】(1)先求出有张硬纸板用方法裁剪,再根据方法和方法列出代数式即可得;(2)结合(1)的答案,根据1个盒子由3个侧面和2个底面构成建立方程,解方程求出的值,由此即可得出答案【详解】解:(1)由题意得:有张硬纸板用方法裁剪,张硬纸板用方法裁剪,则裁剪出的侧面的个数为,裁剪出的底面的个数为,答:裁剪出的侧面的个数为个,底面的个数为个;(2)由题意得:, 线 封 密 内 号学级年名姓 线 封 密 外 解得,则能做盒子的个数为(个),答:若裁剪出的侧面和底面恰好全部用完,能做30个盒子【点睛】本题考查了列代数式和整式的加减、一元一
18、次方程的应用,正确找出等量关系,并建立方程是解题关键2、(1),;(2),;(3)或【分析】(1)利用待定系数法解决问题即可;(2)先求出AF长,再根据AF为腰或底边分三种情况进行讨论,即可解答;(3)如图2中,将线段绕点逆时针旋转得到,则,设交轴于点,则,作点关于的对称点,设交轴于点,则,分别求出直线,直线的解析式即可解决问题(1)抛物线与轴交于、两点,设抛物线的解析式为,在抛物线上,解得,抛物线的解析式为,直线经过、,设直线的解析式为,则,解得,直线的解析式为;(2)抛物线,顶点坐标,当点A为顶点,AF为腰时,AF=AG,此时点G与点F是关于x轴的对称,故此时;当点F为顶点,AF为腰时,F
19、A=FG,此时当点G为顶点,AF为底时,设,解得,综上所述: 线 封 密 内 号学级年名姓 线 封 密 外 (3)如图,将线段绕点逆时针旋转得到,则,设交轴于点,则,直线的解析式为,将线段绕点顺时针旋转得到,则直线的解析式为,设交轴于点,则,综上所述,满足条件的点的坐标为或【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题,属于中考压轴题3、该队获胜7场【分析】设该队获胜x场,平场的场数为 ,根据题意列方程得,计算求解即可【详解】解:设该队获胜x场,平场的场数
20、为 根据题意得: 解得 答:该队获胜7场【点睛】本题考查了一元一次方程的应用解题的关键在于正确的列方程4、(1)(2)7【分析】(1)以中点为原点,建立平面直角坐标系,设,将点代入,待定系数法求解析式即可;(2)令,代入求得,即可求得E点到直线AB的距离(1)解:如图, 线 封 密 内 号学级年名姓 线 封 密 外 C到AB的距离为9m,AB36m,设抛物线解析式为将点代入得解得(2) DE48m,则则求E点到直线AB的距离为7【点睛】本题考查了二次函数的应用,掌握二次函数的性质是解题的关键5、(1)(2)小张在今年年底能获得的最大利润是元.【分析】(1)设小张的“熟客”们这两年向小张采购鱼卷
21、的年平均增长率为则可得方程再解方程即可得到答案;(2)先求解今年的总的销量为箱,设今年总利润为元,价格下调元,则可建立二次函数为,再利用二次函数的性质求解最大值即可.(1)解:设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为 则 整理得: 解得:(负根不合题意舍去)答:小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为(2)解: 2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的, 2020年小张年总销量为:(箱),设今年总利润为元,价格下调元,则 令 则 所以抛物线的对称轴为: 线 封 密 内 号学级年名姓 线 封 密 外 所以函数有最大值, 当时,(元),所以小张在今年年底能获得的最大利润是元.【点睛】本题考查的是一元二次方程的应用,二次函数的应用,掌握“确定相等关系建立一元二次方程,建立二次函数模型”是解本题的关键.