《2021-2022学年浙教版初中数学七年级下册第四章因式分解同步测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解同步测评试卷(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第四章因式分解同步测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)2、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.3、已知,那么的值为( )A.3B.6C.D.4、下列各式从左到右的变形是因式分解为( )A.B.C.D.5、已知下列多项式:;.其中,能用完
2、全平方公式进行因式分解的有( )A.B.C.D.6、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.57、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y8、下列从左边到右边的变形,属于因式分解的是( )A.B.C.D.9、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.10、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解11、下列四个式子从左到右的变形是因式分解的为()A.(xy)(xy)y2x2B.a2+2ab+b21(a+b)21
3、C.x481y4(x2+9y2)(x+3y)(x3y)D.(a2+2a)28(a2+2a)+12(a2+2a)(a2+2a8)+1212、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:213(1)3,263313,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.926213、下列等式中,从左到右是因式分解的是( )A.B.C.D.14、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()A.MNB.MNC.MND.不能确定15、对于,从左到右的变形,表述正确的是( )A
4、.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解二、填空题(10小题,每小题4分,共计40分)1、已知,则的值为_2、因式分解:a3-16a=_3、下列多项式:;,它们的公因式是_4、因式分解:_5、多项式的公因式是_6、因式分解:_7、已知a2b5,则代数式a24ab4b25的值是_8、已知ab5,ab2,则a2b+ab2_9、将分解因式_10、若,则a2bab2_三、解答题(3小题,每小题5分,共计15分)1、分解因式:(1)(2)(3)2、因式分解: 3、若一个三位数(其中a、b、c不全相等且都不为0),重新排列各数位上的数字可得到一个最大数和一个最小数
5、,此最大数和最小数的差叫做原数的差数,记为例如,536的差数(1)_,_;(2)若一个三位数(其中且都不为0),求证:能被99整除;(3)若s、t是各数位上的数字均不为0且互不相等两个三位自然数,s的个位数字为1,十位数字是个位数字的3倍,百位数字为x,t的百位数字为y,十位数字是百位数字的2倍,t的个位数字与s的百位数字相同(,),若能被3整除,能被11整除,求的值-参考答案-一、单选题1、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题意;B. a2b2=(a+b
6、)(ab),故B不符合题意;C. x2+4x+4(x+2)2,是因式分解,故C符合题意;D. ax2aa(x21)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.2、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,
7、熟练掌握完全平方公式是解题的关键.3、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.4、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这
8、个多项式因式分解.5、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.6、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.7、A【详解】直接提取公因式y(ab)分解因式即可.【解答】解:x2y(ab)y(ba)x2y(ab)+y(ab)y(ab)(x2+1).故选:A.【点睛】
9、此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8、C【分析】根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.9、C【分析】根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不能用公式法因式分解;=,能用公式法因式分解;=,能用公式法因式分解.能用公式法
10、分解因式的是故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.10、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.11、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分
11、解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.12、B【分析】根据“和谐数”的概念找出公式:(2k+1)3(2k1)32(12k2+1)(其中k为非负整数),然后再分析计算即可.【详解】解:(2k+1)3(2k1)3(2k+1)(2k1)(2k+1)2+(2k+1)(2k1)+(2k1)22(12 k2+1)(其中 k为非负整数),由2(12k2+1)2019得,k9,k0,1,2,8,9,即得所有不超过2019的“和谐数”,它们的和为13(1)3+(3313)+(5333)+(173153)+(193173)193+16860.故选:B.【点
12、睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.13、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.14、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3
13、,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2(-2+3)|=2,N|-1(-2+3)|=1MN故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断.15、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根
14、据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、-4【分析】由ab8,得到a8b,代入ab160,得到(b4)20,根据非负数的性质得到结论.【详解】解:ab8,a8b,ab160,(8b)b16b28b16(b4)20,(b4)20,b4,a4,a2b42(4)4,故答案为:4.【点睛】本题考查了配方法的应用,非负数的性质,正确的理解题意是解题的关键.2、a(a+4)(a-4)【分析】原式提取公因式,再利用平方差公
15、式分解即可.【详解】解:原式=a(a2-16)=a(a+4)(a-4),故答案为:a(a+4)(a-4).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、【分析】将各多项式分解因式,即可得到它们的公因式.【详解】解:, ,它们的公因式是,故答案为:.【点睛】此题考查多项式的因式分解方法,公因式的定义,熟练掌握多项式的因式分解方法是解题的关键.4、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为:.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.5、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公
16、因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.6、【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.7、20【分析】将a=2b-5变为a-2b=-5,再根据完全平方公式分解a2-4ab+4b2-5=(a-2b)2-5,代入求解.【详解】解:a=2b-5,a-2b=-5,a2
17、-4ab+4b2-5=(a-2b)2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.8、10【分析】先用提公因式法将a2b+ab2变形为ab(ab),然后代值计算即可得到答案.【详解】解:a2b+ab2ab(a+b)ab(ab).ab5,ab2,a2b+ab2ab(ab)5(2)10.故答案为:10.【点睛】本题主要考查了用提公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法.9、【分析】原式利用平方差公式分解即可.【详解】解:=故答案为:.【点睛】此题考查了因式分解,熟练掌握平方差公式是解本题的关键.10、1【分析】直接提取
18、公因式ab,进而分解因式,把已知数据代入得出答案.【详解】解:ab,ab2,a2bab2ab(ab)21.故答案为:1.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.三、解答题1、(1);(2);(3)【分析】(1)直接提公因式n即可分解;(2)直接利用平方差公式分解;(3)先利用平方差公式分解,再利用完全平方公式分解.【详解】解:(1)=;(2)=;(3)=【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.2、x(x+2y)(x-2y);(x+y-1)(x-y+1)【分析】先提取公因式,然后运用平方差公式因式分解即可;
19、先运用完全平方公式将括号里因式分解,然后运用平方差公式因式分解即可.【详解】解:;.【点睛】本题考查了提公因式法因式分解与公式法因式分解,熟知乘法公式的结构特点是解题的关键.3、(1)396,495;(2)见解析;(3)495【分析】(1)根据的定义求解即可;(2)先根据的定义,求出关于,的代数式,即可证明它能被99整除;(2)先列出,的代数式,根据能被3整除,能被11整除确定,的值,再根据的定义求解即可【详解】解:(1),故答案为:396,495;(2)且都不为0,能被99整除;(3)由题意,能被3整除,4,7当时,、是各数位上的数字均不为0且互不相等,不符合题意,舍去当时,能被11整除,即,、是各数位上的数字均不为0且互不相等,不符合题意,舍去当时,能被11整除,即,.【点睛】本题考查的是因式分解的应用,解题的关键是掌握对数字拆分组合的能力,这类题目多需要根据题设进行讨论求解.