《2022中考特训:浙教版初中数学七年级下册第五章分式综合测评试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022中考特训:浙教版初中数学七年级下册第五章分式综合测评试卷(无超纲).docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、某种细胞的直径是0.0005mm,这个细胞的直径是( )AmmBmmCmmDmm2、新冠病毒的直径约为125纳米,已知1纳米=0.000001毫米,则125纳米用科学记数法表示为()A毫米B毫米C毫米D毫米3、下列说法正确的是( )A没有意义B任何数的0次幂都等于1CD若,则4、若(a1)1有意义,则a的取值范围是()Aa0Ba2Ca1Da15、新冠病毒的大小为125纳米也就是0.000000125米,这个数
2、据用科学记数法可表示为( )A0.125107B1.25107C1.25107D0.1251076、关于的分式方程有解,则字母的取值范围是( )A或BCD且7、化简的结果是( )ABCD8、新冠病毒的直径约为125纳米,已知1纳米毫米,则125纳米用科学记数法表示为( )A毫米B毫米C毫米D毫米9、设甲、乙、丙为三个连续的正偶数,已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍,设乙为x,所列方程正确的是( )ABCD10、研究发现新冠肺炎病毒大小约为0.000000125米,数0.000000125用科学记数法表示为()A125109B12.5108C1.25107D1.25106二、填空
3、题(5小题,每小题4分,共计20分)1、计算:_2、 (2)3=_.3、已知,则_4、若(m3)01,则m的取值为_5、若关于x的方程无解,则a的值为 _三、解答题(5小题,每小题10分,共计50分)1、(1)计算:;(2)计算:(2x2y)23xy(6x2y)2、解方程:(1);(2)3、列分式方程解应用题某商场新进一种商品,第一个月将此商品的进价提高20%作为销售价,共获利600元第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了40件,并且商场第二个月比第一个月多获利150元问此商品的进价是多少元?商场第二个月销售多少件?4、计算:(1)()2+(
4、3.14)0(2)(a1)2a(a+2)5、先化简,再求值:,其中a3-参考答案-一、单选题1、C【分析】根据科学记数法可直接进行求解【详解】解:由题意得:0.0005mm=mm;故选C【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键2、C【分析】科学记数法的表示形式为的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数【详解】125纳米=1250.000001毫米=0.000125毫米=毫米,故选:C【点睛】本题考查科学记数法的表示方法科学记
5、数法的表示形式为的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值3、D【分析】根据除0之外的任何数的零次幂都等于1即可判定A、B、D,根据幂的混合运算法则即可判断C【详解】解:A、,有意义,故此选项不符合题意;B、除0外的任何数的0次幂都等于1,故此选项不符合题意;C、,故此选项不符合题意;D、若,则,故此选项符合题意;故选D【点睛】本题主要考查了幂的运算,零指数幂,解题的关键在于能够熟练掌握相关计算法则4、D【分析】直接利用负整数指数幂的定义得出答案【详解】解:若有意义,a-10,则的取值范围是:故选:D【点睛】此题主要考查了负整数指数幂,正确掌握相关定义是解题关键5、C
6、【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:0.000000125=1.25107,故选:C【点睛】此题考查科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,等于原数左数第一个非零数字前0的个数,按此方法即可正确求解6、D【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程有解”,即x0且x2建立不等式即可求a的取值范围【详解】解:,去分母得:5(x-2)=ax,去括号得:5x-10=ax,移项,合并同类项得:(5-a)x=10,关于x的分
7、式方程有解,5-a0,x0且x2,即a5,系数化为1得:,且,即a5,a0,综上所述:关于x的分式方程有解,则字母a的取值范围是a5,a0,故选:D【点睛】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式另外,解答本题时,容易漏掉5-a0,这应引起同学们的足够重视7、D【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案【详解】解:.故选:D.【点睛】本题考查负整数指数幂的意义,熟练掌握负整数指数幂的运算法则即是解题的关键.8、C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了
8、多少位,n的绝对值与小数点移动的位数相同【详解】解:125纳米=1251.010-6毫米=12510-6毫米=1.2510-4毫米,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值9、C【分析】因为甲、乙、丙为三个连续的正偶数,设乙为x,则甲为,丙为,然后根据已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍列出方程即可【详解】解:甲、乙、丙为三个连续的正偶数,设乙为x,则甲为,丙为,根据题意得:,故选:C【点睛】本题考查了分式方程的应用,读懂题意,找准等量关系是解决本题的关键10、C【分析】绝对值小
9、于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000125=1.2510-7,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、-3【分析】首先计算零指数幂、负整数指数幂,再作加减法【详解】解:=-3,故答案为:-3【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确零指数幂和负指数幂的运算法则2、【分析】利用负整数指数幂:,为正
10、整数),进而得出答案【详解】解:故答案为:【点睛】此题主要考查了负整数指数幂,正确掌握负整数指数幂的性质是解题关键3、51【分析】直接利用完全平方公式计算得出答案【详解】解:,即-249,则51,故答案为:51【点睛】本题主要考查了分式的化简求值以及完全平方公式,正确运用公式是解题关键4、m3【分析】利用零指数幂的法则判断即可确定出的值【详解】解:,则故答案为:【点睛】此题考查了零指数幂,熟练掌握零指数幂的法则是解本题的关键5、-1或-2或【分析】化简得,整理有,分类讨论,若=0且时,则a=-1,若0,则,由x的方程无解可知x=1或x=2,则或,解得a=-2或a=【详解】将化简得若=0且时则a
11、=-1若0,则有关于x的方程无解即x-1=0、x-2=0 故x=1或2将x=1或2代入有或解得a=-2或a=故答案为:-1或-2或【点睛】本题考查了分式方程无解的问题,依据分式方程的无根确定字母参数的情况有1、分式方程化成的整式方程,该整式方程本事没有根,若化为的是一元一次方程,则一次项系数为0即可,若化为的一元二次方程,则判别式小于零即可;分式方程的增根有两个特点:第一:它必须是由分式方程转化成的整式方程的根;第二:它能使原分式方程的最简公分母等于0;依据分式方程的增根确定字母参数的值的一般步骤先将分式方程转化为整式方程;由题意求出增根;将增根代入所化得的整式方程,解之就可得到字母参数的值三
12、、解答题1、(1)17;(2)-2 x3y2【分析】(1)先算负整数指数幂,零指数幂,绝对值和乘方,再算加减法;即可求解;(2)先算积的乘方再算单项式的乘除法,即可求解【详解】解:(1)原式=17;(2)原式=4x4y23xy(6x2y)=12x5y3(6x2y)=-2 x3y2【点睛】本题主要考查实数的混合运算以及整式的混合运算,掌握负整数指数幂,零指数幂以及单项式的乘除法法则,是解题的关键2、(1)x4;(2)x2【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1)方程两边同时乘以x2得x3+x23,解整式方程得,x4,检验:当x
13、4时,x20x4是原方程的解(2)方程两边同时乘以(x1)(2x+3)得:2x2x62(x2)(x1),整理得:5x10,解得:x2,检验:当x2时,(x1)(2x+3)0,分式方程的解为x2【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验3、50元,100件【分析】设此商品进价是x元,然后根据等量关系为:第二个月的销售量-第一个月的销售量=40,算出后可得到此商品的进价,列出方程求解即可【详解】解:设此商品进价是x元,则:,解得:经检验:x=50是方程的根则(件),答:商品进价为50元,商场第二个月共销售100件【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确根据题意列出方程求解4、(1)5;(2)4a+1【分析】(1)根据负指数幂和零次幂的运算法则进行计算即可得出答案;(2)根据完全平方公式及单项式乘以多项式法则进行计算,再合并同类项即可得出答案【详解】解:(1)原式;(2)原式【点睛】此题考查了负指数幂和零次幂的运算法则以及整式的乘法,涉及了完全平方公式的应用,熟练掌握相关基础知识是解题的关键5、,【分析】利用因式分解,分式的乘法,除法运算法则,约分等先化简,后代入求值即可【详解】原式;当a3时,原式【点睛】本题考查了分式的乘除运算,熟练掌握因式分解,约分,运算法则是解题的关键