2022年精品解析北师大版八年级数学下册第五章分式与分式方程专项测试试题(含详细解析).docx

上传人:可****阿 文档编号:30723061 上传时间:2022-08-06 格式:DOCX 页数:16 大小:236.89KB
返回 下载 相关 举报
2022年精品解析北师大版八年级数学下册第五章分式与分式方程专项测试试题(含详细解析).docx_第1页
第1页 / 共16页
2022年精品解析北师大版八年级数学下册第五章分式与分式方程专项测试试题(含详细解析).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2022年精品解析北师大版八年级数学下册第五章分式与分式方程专项测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版八年级数学下册第五章分式与分式方程专项测试试题(含详细解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第五章分式与分式方程专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x的方程无解,则a( )A1B3C1D1或32、2021年6月,怀柔区政府和内蒙古自治区四子王旗政

2、府签订了2021年东西部协作协议,在乡村振兴、产业合作、消费帮扶、就业帮扶、教育和健康帮扶方面,按计划推动工作落实在产业合作过程中,怀柔区为四子王旗提供设备和技术支持运送设备使用大货车,技术人员乘坐面包车已知怀柔区与四子王旗相距600千米,若面包车的速度是大货车的1.2倍,两车同时从怀柔区出发,大货车到达四子王旗比面包车多用小时求大货车和面包车的速度设大货车速度为x 千米/小时,下面是四位同学所列的方程:国国:; 佳佳:;富富:;强强:其中,正确的序号是( )ABCD3、下列说法正确的是( )A若A、B表示两个不同的整式,则一定是分式B如果将分式中的x和y都扩大到原来的3倍,那么分式的值不变C

3、单项式是5次单项式D若,则4、若关于x的方程有增根,则m的取值是( )A0B2C-2D15、2021年10月16日,我国神舟十三号载人飞船与天和核心舱首次成功实现“径向对接”,对接过程的控制信息通过微波传递微波理论上可以在0.000003秒内接收到相距约1千米的信息.将数字0.000003用科学记数法表示应为()ABCD6、雾是由悬浮在大气中微小液滴构成的气溶胶,雾滴的直径多为0.000004m0.00003m其中,0.000004用科学记数法表示为( )A4106B4107C410-6D410-77、下列代数式中:,共有分式( )A2个B3个C4个D5个8、若分式有意义,则x的取值范围是(

4、)ABCD9、某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书若设每个A型包装箱可以装书x本,则根据题意列得方程为()ABCD10、下列各式中,是分式的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当_时,分式无意义2、若分式有意义,则x的取值范围是 _3、已知:公式其中,均不为零则_(用含有,的式子表示)4、将数0.000067用科学记数法表示为_5、计算:_三、解答题(5小题,每小题10分,共计50分)1、为落实党中央

5、“绿水青山就是金山银山”发展理念,某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前8天完成了这一任务,求原计划工作时每天绿化的面积为多少万平方米2、先化简,再代入求值:,其中3、A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等(1)A、B两种机器人每小时分别搬运多少千克化工原料?(2)某化工厂有3000kg化工原料需要搬运,A型机器人先工作若干小时,然后B型机器人加入一起搬运化工原料,所有化工原料搬运完成若A、B两种机器人合

6、作的时间不超过10小时,则A种机器人至少先工作多少小时?4、(1)先化简,再求值:,其中;(2)解方程:5、计算:(1); (2)-参考答案-一、单选题1、B【分析】先去分母,化成整式方程,令x-1=0,确定x的值,回代x4a,得a值【详解】,去分母,得3=x-1+a,整理,得x4a,令x-10,得x=1,4a1,a3故选B【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键2、C【分析】根据题意设大货车速度为x千米/小时,则面包车的速度为1.2x千米/小时,总路程均为600千米,由路程、速度、时间之间的关系及大货车到达四子王旗比面包车多用小时,列出方程即可得【详解】解:

7、设大货车速度为x千米/小时,则面包车的速度为1.2x千米/小时,总路程均为600千米,根据题意可得:,变形为: ,正确,故选:C【点睛】题目主要考查分式方程的应用,理解题意,熟练运用路程、速度、时间之间的关系是解题关键3、D【分析】根据分式的定义(如果表示两个整式,并且中含有字母,那么式子叫做分式)、分式的基本性质、单项式的次数的定义(一个单项式中,所有字母的指数的和叫做这个单项式的次数)、同底数幂除法的逆用逐项判断即可得【详解】解:A、如果表示两个整式,并且中含有字母,那么式子叫做分式,则此项错误;B、,则此项错误;C、单项式是2次单项式,则此项错误;D、若,则,则此项正确;故选:D【点睛】

8、本题考查了分式与分式的基本性质、单项式的次数、同底数幂除法的逆用,掌握理解各定义和性质是解题关键4、A【分析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值【详解】方程两边都乘以(x-2)得:-2+x+m=2(x-2),分式方程有增根,x-2=0,解得x=2,-2+2+m=2(2-2),解得m=0故答案为:A【点睛】此题考查分式方程的增根,掌握运算法则是解题关键5、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10-n,其中110,与较大数的科学记数法不同的是其所使

9、用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】故选:B【点睛】本题考查了科学记数法,科学记数法一般形式为a10n,其中110,确定a和n的值是解题关键6、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000004=410-6故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、B【分析】根据分式的定义,分母中是否含有字母,如果

10、含有字母则是分式,如果不含有字母则不是分式,即可得出正确答案【详解】解:在,中,是分式的有,共3个;故选:B【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数熟练掌握运用这个区别是解题关键8、D【分析】根据分式有意义的条件是分母不为0列不等式求解【详解】解:分式有意义,解得:,故选D【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键9、C【分析】设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,所用A型包装箱的数量=所用B型包装箱的数量6,列分式方程即可【详解】解:设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,根据题意,

11、得:,故选:C【点睛】本题考查了列分式方程解应用题,由实际问题抽象出分式方程的关键是分析题意找出等量关系10、B【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式【详解】解:A是整式,不符合题意;B是分式,符合题意;C是整式,不符合题意;D是整式,不符合题意;故选:B【点睛】本题主要考查的是分式的定义,掌握分式的定义是解题关键二、填空题1、【分析】分式无意义的条件是分母等于0,根据分母等于0,列出方程,求出的值即可【详解】分式无意义, , 故答案为:【点睛】本题主要是考查了分式无意义的条件,掌握“分式的分母为0,分式无意义”是解决本题的关键2、【分析】根据分式有意义的条

12、件,即可求解【详解】解:根据题意得: ,解得: 故答案为:【点睛】本题主要考查了分式有意义的条件,熟练掌握当分式的分母不等于0时分式有意义是解题的关键3、【分析】在公式的两边都乘以即可得到答案.【详解】解: 故答案为:【点睛】本题考查的是公式的变形,利用解分式方程的思想进行变形是解本题的关键.4、6.7105【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000676.7105故答案为:6.7105【点睛】本题考查用科学记数法表示较小的数,一般

13、形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、2【分析】根据分式的运算法则即可求解【详解】故答案为:2【点睛】此题主要考查分式的运算,解题的关键是熟知其运算法则三、解答题1、原计划每天绿化的面积为1.5万平方米【分析】设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,由题意:某工程队承接了60万平方米的荒山绿化任务,结果提前8天完成了这一任务,列出分式方程,解方程即可【详解】解:设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,依题意得:8,解得:x1.5,经检验,x1.5

14、是原方程的解,且符合题意答:原计划每天绿化的面积为1.5万平方米【点睛】本题考查了分式方程的应用找准等量关系,列出分式方程是解决问题的关键2、,2【分析】原式去括号合并得到最简结果,把变形为代入计算即可求出值【详解】解:,x(x2),变形为,原式2【点睛】此题考查了分式化简求值,熟练掌握运算法则是解本题的关键3、(1)B型号机器人每小时搬运60千克,A型号机器人每小时搬运90千克;(2)A种机器人至少先工作小时【分析】(1)设B型号机器人每小时搬运x千克,A型号机器人每小时搬运千克,列出分式方程计算即可;(2)设A种机器人至少先工作t小时,列出方程计算即可;【详解】(1)设B型号机器人每小时搬

15、运x千克,A型号机器人每小时搬运千克,则,解得:,经检验,是分式方程的解,B型号机器人每小时搬运60千克,A型号机器人每小时搬运90千克;(2)A、B两种机器人合作的时间不超过10小时,设A种机器人至少先工作t小时,则,解得:,A种机器人至少先工作小时【点睛】本题主要考查了分式方程的应用,一元一次方程的应用,正确列出方程准确计算是解题的关键4、(1),;(2)无解【分析】(1)根据分式的性质化简即可,再将字母的值代入化简后的式子求值;(2)先同时乘以公分母,转化为整式方程,进而求解即可,注意要检验【详解】解:(1)当时,原式(2)即两边同乘以,得解得当时,原方程无解【点睛】本题考查了分式的化简求值,分式方程,掌握分式的运算和性质是解题的关键5、(1);(2)【分析】(1)利用完全平方公式、单项式乘以多项式法则解题;(2)利用平方差公式、完全平方公式原式化为,再结合整式的乘除法解题即可【详解】解:(1)(2)【点睛】本题考查整式的乘除,涉及平方差公式、完全平方公式等知识,是重要考点,难度一般,掌握相关知识是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁