《2022年精品解析北师大版八年级数学下册第五章分式与分式方程专项训练试题.docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版八年级数学下册第五章分式与分式方程专项训练试题.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若分式有意义,则x的取值范围是( )ABCD2、分式方程的解是( )ABCD3、八年级学生去距学校15km
2、的博物馆参观,一部分学生骑自行车先走,过了30min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度若设骑车同学的速度为x千米/时,则所列方程时( )ABCD4、下列计算正确的是( )ABCD5、已知分式的值等于0,则x的值为( )A0B1CD1或6、 “绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务设原计划工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )ABCD7、下列各式中,是分式的是( )ABCD8、下列分式中最简分
3、式是( )ABCD9、下列是最简分式的是( )ABCD10、2021年10月16日,我国神舟十三号载人飞船与天和核心舱首次成功实现“径向对接”,对接过程的控制信息通过微波传递微波理论上可以在0.000003秒内接收到相距约1千米的信息.将数字0.000003用科学记数法表示应为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若是关于的分式方程的解,则的值等于_2、新型冠状病毒外包膜直径最大约140纳米(1纳米毫米)用科学记数法表示其最大直径为_毫米3、使分式有意义的x的取值范围是_4、当_时,分式有意义;当_时,分式值为05、已知关于x的方程无解,则_三、解
4、答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中a2,b12、在开学第一课中,东京奥运会的奥运健儿们向新开学的同学们送上了“希望你们能像运动员一样,努力奔跑,刻苦学习,实现你们的梦想”的祝福为了提高学生的体育锻炼的意识和能力,丰富学生的体育锻炼的内容,学校准备购买一批体育用品 在购买跳绳时,甲种跳绳比乙种跳绳的单价低10元,用1600元购买甲种跳绳与用2100元购买乙种跳绳的数量相同,求甲乙两种跳绳的单价各是多少元?3、化简:4、计算:(1)(2)(3)(4)5、先化简,再求值:,其中-参考答案-一、单选题1、D【分析】根据分式有意义的条件是分母不为0列不等式求解【详解】解:
5、分式有意义,解得:,故选D【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键2、D【分析】两边都乘以2(3x-1),化为整式方程求解,然后检验即可【详解】解:,两边都乘以2(3x-1),得3(3x-1)-2=7,9x-3-2=7,9x=12,检验:当时,2(3x-1) 0,是原分式方程的解,故选D【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验3、C【分析】设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据同时到达列出方程即可【详解】解:设骑车同学的速度为x千米/时,汽车的速度是2
6、x千米/时,根据题意列方程得,故选:C【点睛】本题考查了分式方程的应用,解题关键是找准等量关系,列出方程,注意单位转换4、D【分析】根据整式和分式的运算法则即可求出答案【详解】解:A、,故A选项错误B、,故B选项错误C、,故C选项错误D、,故D选项正确故选:D【点睛】本题考查整式和分式的运算法则,解题的关键是熟练运用整式和分式的运算法则,本题属于基础题型5、B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得【详解】解:分式的值为零,解得:x=1,故选B【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键6、A【分析】设原计划工作时每天绿化的面积为x万平方米
7、,则实际每天绿化的面积为万平方米,根据题意,得,选择即可【详解】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为万平方米,根据题意,得,故选A【点睛】本题考查了分式方程的应用题,准确找到等量关系是解题的关键7、B【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式【详解】解:A是整式,不符合题意;B是分式,符合题意;C是整式,不符合题意;D是整式,不符合题意;故选:B【点睛】本题主要考查的是分式的定义,掌握分式的定义是解题关键8、C【分析】根据最简分式的定义:在化简结果中,分子和分母已没有公因式,这样的分式称为最简分式逐项判断即得答案【详解】解:A、,不是
8、最简分式,故本选项不符合题意;B、,不是最简分式,故本选项不符合题意;C、是最简分式,故本选项符合题意;D、,不是最简分式,故本选项不符合题意故选:C【点睛】本题考查了分式的约分和最简分式的定义,属于基本题型,熟练掌握上述知识是解题的关键9、C【详解】解:A、,不是最简分式,此项不符题意;B、,不是最简分式,此项不符题意;C、是最简分式,此项符合题意;D、,不是最简分式,此项不符题意;故选:C【点睛】本题考查了最简分式,熟记最简分式的定义(分子与分母没有公因式的分式,叫做最简分式)是解题关键10、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10-n,其中110,与较大数的
9、科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】故选:B【点睛】本题考查了科学记数法,科学记数法一般形式为a10n,其中110,确定a和n的值是解题关键二、填空题1、【分析】纠错直接把x2代入分式方程,然后解关于a的一次方程即可【详解】解:把x2代入方程得,解得a1故答案为:1【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解2、【详解】解:因为1纳
10、米毫米毫米,所以140纳米毫米毫米,故答案为:【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成的形式,其中,为整数,这种记数的方法叫做科学记数法)是解题关键确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值时,是正数;当原数的绝对值时,是负数3、【分析】根据分式有意义的条件,列出不等式,进而即可求解【详解】解:由题意得:x-10,故答案是:【点睛】本题主要考查分式有意义的条件,掌握分式的分母不等于0,是解题的关键4、2 1 【分析】根据分式的定义,分母不为零则分式有意义,分式的分子为零而分母不为零,则分式的值为零【详解】当时,即时,分
11、式有意义;由题意,即但当x=1时,分母x-1=1-1=0;故答案为:;1【点睛】本题考查了分式的意义及分式值为零的条件,特别要注意的是:分式的分母不能为零5、6【分析】先将方程转化为整式方程,根据分式方程无解可得到x-2=0,求出x2,代入整式方程即可求得m.【详解】解:分式方程去分母得:3x-mx2,由分式方程无解得到x20,即x2,代入整式方程得:6-m0,即m6故答案为6.【点睛】本题考查了分式方程无解的情况,本体的解题关键是掌握分式方程无解即是把分式方程化成整式方程后,整式方程无解,或把分式方程化成整式方程后,整式方程有解,但这个解使分式方程的分母为0,是增根.三、解答题1、,.【分析
12、】由题意先分式的混合运算法则进行化简,进而代入求值即可得出答案.【详解】解:将a2,b1代入.【点睛】本题考查分式的化简求值,能够熟练掌握分式的化简运算的方法是解题的关键2、乙种跳绳的单价为42元,甲种跳绳的单价为32元【分析】设乙种跳绳的单价为元,则甲种跳绳的单价为元,根据题意列出方程求解即可【详解】设乙种跳绳的单价为元,则甲种跳绳的单价为元,依据题意列出方程为:,解得:,经检验:是所列方程的解,并且符合实际意义,答:乙种跳绳的单价为42元,则甲种跳绳的单价为32元【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,分式方程注意检验3、【分析】有分式的加减乘除运算进行化简,即可得到
13、答案【详解】解:原式;【点睛】本题考查了分式的加减乘除运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简4、(1)(2)(3)(4)【分析】(1)根据二次根式的乘法运算可进行求解;(2)根据分式的加法运算可进行求解;(3)利用平方差公式进行整式的运算即可;(4)先化简,然后再进行二次根式的运算即可(1)解:;(2)解:;(3)解:原式=;(4)解:原式=【点睛】本题主要考查二次根式的混合运算、分式的加减运算及整式的运算,熟练掌握各个计算法则是解题的关键5、,【分析】根据分式的加法和乘法可以化简题目中的式子,然后将a的值代入即可解答本题【详解】解:原式=,当=-3时,原式=-3+2=-1时【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法