《2022年最新沪科版八年级下册数学专题测试-卷(Ⅲ)(含答案及解析).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版八年级下册数学专题测试-卷(Ⅲ)(含答案及解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学专题测试 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x3是方程x24x+m0的一个根,则m的值为()A3B4C4D32、如
2、图,长方形OABC中,点A在y轴上,点C在x轴上,点D在边AB上,点E在边OC上,将长方形沿直线DE折叠,使点B与点O重合则点D的坐标为( )ABCD3、若0是关于x的一元二次方程mx25xm2m0的一个根,则m等于()A1B0C0或1D无法确定4、关于x的一元二次方程有一个根为0,则k的值是( )A3B1C1或D或35、小颖同学参加学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为86分、90分、80分,若这三项依次按照50%,40%,10%的百分比确定成绩,则她的成绩为( )A84分B85分C86分D87分6、下列各式计算正确的是()AB2C1D1
3、07、下列结论中,对于任何实数a、b都成立的是()ABCD8、点P(3,4)到坐标原点的距离是( )A3B4C4D59、若一元二次方程的较小根为,则下面对的值估计正确的是( )ABCD10、下列条件中,不能判定一个四边形是平行四边形的是( )A一组对边平行且相等B对角线互相平分C两组对角分别相等D一组对边平行,另一组对边相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:()2+1=_ 线 封 密 内 号学级年名姓 线 封 密 外 2、有3人患了流感,经过两轮传染后共有192人患流感,设每轮传染中平均一个人传染了x人,则可列方程为_3、如图,在长方形ABCD中,点
4、E是BC边上一点,连接AE,把沿AE折叠,使点B落在点处当为直角三角形时,BE的长为_4、方程x23x+20两个根的和为 _,积为 _5、如图,点O是平行四边形ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为S1,S2,那么S1,S2之间的关系为S1_S2(填“”或“=”或“”)三、解答题(5小题,每小题10分,共计50分)1、如图,点O是等边三角形ABC内的一点,将BOC绕点C顺时针旋转60得ADC,连接OD(1)当时, ;(2)当时, ;(3)若,则OA的长为 2、已知:在中,的面积为9点为边上动点,过点作,交的延长线于
5、点的平分线交于点(1)如图1,当时,求的长;(2)如图2,当点为的中点时,请猜想并证明:线段、的数量关系3、某中学初二年级游同学在学习了勾股定理后对九章算术勾股章产生了学习兴趣今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽问索长几何?”本题大意是:如图,木柱,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度4、若直角三角形的三边的长都是正整数,则三边的长为“勾股数”构造勾股数,就是要寻找3个正整数,使它们满足“其中两个数的平方和(或平方差)等于第三个数的平方”,即满足以下关系:或,要满足以上、的关系,可以从乘法公式入手,我们知道:,如果等式的
6、右边也能写成“”的形式,那么它就符合的关系因此,只要设,式就可化成:于是,当,为任意正整数,且时,“,和”就是勾股数,根据勾股数的这种关系式,就可以找出勾股数(1)当,时,该组勾股数是_;(2)若一组勾股数中最大的数与最小的数的和为72,且,求,的值; 线 封 密 内 号学级年名姓 线 封 密 外 (3)若一组勾股数中最大的数是(是任意正整数),则另外两个数分别为_, _(分别用含的代数式表示)5、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图请根据相关信息,解
7、答下列问题:(1)该校抽查八年级学生的人数为 ,图中的值为 ;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?-参考答案-一、单选题1、A【分析】根据一元二次方程的解,把代入得到关于的一次方程,然后解此一次方程即可【详解】解:把代入得,解得故选:A【点睛】本题考查了一元二次方程的解,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解2、C【分析】设AD=x,在RtOAD中,据勾股定理列方程求出x,即可求出点D的坐标【详解】解:
8、设AD=x,由折叠的性质可知,OD=BD=8-x,在RtOAD中,OA2+AD2=OD2,42+x2=(8-x)2,x=3,D,故选C【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键直角三角形两条直角边的平方和等于斜边的平方3、A【分析】根据一元二次方程根的定义,将代入方程解关于的一元二次方程,且根据一元二次方程的定 线 封 密 内 号学级年名姓 线 封 密 外 义,二次项系数不为0,即可求得的值【详解】解:0是关于x的一元二次方程mx25xm2m0的一个根,且解得故选A【点睛】本题考查了一元二次方程根的定义,一元二次方程的定义,因式分解法解一元二次方程
9、,注意是解题的关键一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程4、A【分析】把x=0代入原方程得到转化关于k的方程,然后结合二次项系数不等于0求解即可【详解】解:关于x的一元二次方程的一个根是0,-2k-3=0,且k+10,k=3故选A【点睛】本题主要考查了一元二次方程根的定义,一元二次方程的解法,一元二次方程的定义等知识点,熟练掌握一元二次方程根的定义是解题的关键5、D【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案【详解】解:根据题意得:86
10、50%+9040%+8010%=43+36+8=87(分)故选:D【点睛】本题考查的是加权平均数的求法,本题易出现的错误是求86,90,80这三个数的算术平均数,对平均数的理解不正确6、D【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的性质对C进行判断;根据二次根式的乘法法则对D进行判断【详解】解:A与不能合并,所以A选项不符合题意;B=,所以B选项不符合题意;C=,所以C选项不符合题意;D=25=10,所以D项符合题意故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法法则是解决问题的关键7、D【分析
11、】根据二次根式运算的公式条件逐一判断即可【详解】a0,b0时,A不成立;a0,b0时,B不成立;a0时,C不成立;,D成立;故选D【点睛】本题考查了二次根式的性质,熟练掌握公式的使用条件是解题的关键8、D【分析】利用两点之间的距离公式即可得【详解】解:点到坐标原点的距离是,故选:D【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键9、A【分析】求出方程的解,求出方程的最小值,即可求出答案【详解】x2-2x-1=0,x2-2x+1=2,即(x-1)2=2,x=1,方程的最小值是1-,12,-2-1,1-21-1+1,-11-0,-1x10,故选:A【点睛】本题考查了求一元
12、二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估算无理数的大小 线 封 密 内 号学级年名姓 线 封 密 外 10、D【分析】根据平行四边形的判定方法一一判断即可;【详解】解:A、一组对边平行且相等的四边形是平行四边形,故本选项不符合题意;B、对角线互相平分的四边形是平行四边形,故本选项不符合题意;C、两组对角分别相等的四边形是平行四边形,故本选项不符合题意;D、一组对边平行,另一组对边相等的四边形还可能是等腰梯形,本选项符合题意;故选:D【点睛】本题考查平行四边形的判定方法,解题的关键是熟练掌握平行四边形的判定方法二、填空题1、4【分析】先乘方,再加法【详解】解:原式=3+1=
13、4故答案为:4【点睛】本题考查了二次根式的性质,掌握()2=a(a0)是解决本题的关键2、【分析】根据题意可得, 每轮传染中平均一个人传染了x个人,经过一轮传染之后有人感染流感,两轮感染之后的人数为192人,依此列出二次方程即可.【详解】解:设每轮传染中平均一个人传染了x个人,依题可得: ,故答案为:【点睛】本题考查了由实际问题与一元二次方程,关键是得到两轮传染数量关系,从而可列方程求解3、或3【分析】分两种情形:如图1中,当,共线时,如图2中,当点落在上时,分别求解即可【详解】解:如图1中,当,共线时,四边形是矩形, 线 封 密 内 号学级年名姓 线 封 密 外 ,设,则,在中,如图2中,当
14、点落在上时,此时四边形是正方形,综上所述,满足条件的的值为或3故答案是:或3【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,解题的关键是学会用分类讨论的思想思考问题4、3 2 【分析】根据一元二次方程根与系数的关系:解题【详解】解:方程x23x+20故答案为:3,2【点睛】本题考查一元二次方程根与系数的关系韦达定理,是重要考点,难度较易,掌握相关知识是解题关键5、=【分析】根据平行四边形的性质和全等三角形的判定和性质即可得到结论【详解】解:四边形ABCD是平行四边形,ADBC,EDO=FBO,点O是ABCD的对称中心,OB=OD,在DEO与BFO中,DEOBFO(ASA),SDEO=SBF
15、O, 线 封 密 内 号学级年名姓 线 封 密 外 SABD=SCDB,S1=S2故答案为:=【点睛】此题主要考查了中心对称,平行四边形的性质以及全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键三、解答题1、(1)40;(2)60;(3)【分析】(1)证明COD是等边三角形,得到ODC=60,即可得到答案;(2)利用ADC-ODC求出答案;(3)由BOCADC,推出ADC=BOC=150,AD=OB=8,根据COD是等边三角形,得到ODC=60,OD=,证得AOD是直角三角形,利用勾股定理求出(1)解:CO=CD,OCD=60,COD是等边三角形;ODC=60,ADC=BOC
16、=,ADC-ODC=40,故答案为:40;(2)ADC=BOC=,ADC-ODC=60,故答案为:60;(3)解:当,即BOC=150,AOD是直角三角形BOCADC,ADC=BOC=150,AD=OB=8,又COD是等边三角形,ODC=60,OD=,ADO=90,即AOD是直角三角形,,故答案为:【点睛】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力2、(1
17、)的长为4(2)AC=CD+DB;证明见解析 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)根据三角形的面积公式得出CP,进而利用勾股定理得出PA即可;(2)延长BD,过A作AOBC,利用平行四边形的性质解答即可(1),的面积为9,由勾股定理得:;(2)过作交BD的延长线于点O,四边形是平行四边形,AC=BO,是的中点,延长肯定可以过点点,的平分线交于点,【点睛】本题考查了平行线的性质,角平分线的性质和平行四边形的性质,解题的关键是根据平行四边形的性质进行解答3、绳索长是尺【分析】设,则,由勾股定理及即可求解【详解】设,则,在中,解得:,答:绳索长是尺【点睛】本题考查勾股定理得应
18、用,用题意列出等量关系式是解题的关键4、 线 封 密 内 号学级年名姓 线 封 密 外 (1)3,4,5(2)m=6,n=5(3)2p+3,2p2+6p+4【分析】(1)将m=2,n=1代入计算,即可得到m2+n2=5,m2-n2=3,2mn=4,进而得出该组勾股数是3,4,5;(2)依据作差的方法即可判断出最大的数为m2+n2,再分类讨论:当m2-n2最小时,当2mn最小时,分别依据最大的数与最小的数的和为72,且m-n=1,即可得出m,n的值;(3)先利用配方法,得到2p2+6p+5=(p+1)2+(p+2)2,再令m=p+2,n=p+1,即可得到另外两个数分别为2p+3,2p2+6p+4
19、【小题1】解:当m=2,n=1时,m2+n2=5,m2-n2=3,2mn=4,该组勾股数是3,4,5,故答案为:3,4,5;【小题2】(m2+n2)-(m2-n2)=2n20,m2+n2m2-n2,m2+n2-2mn=(m-n)20,m2+n22mn,最大的数为m2+n2,当m2-n2最小时,(m2+n2)+(m2-n2)=2m2=72,解得m=6或m=-6(舍去),又m-n=1,n=5;当2mn最小时,(m2+n2)+2mn=(m+n)2=72,解得m+n=(舍去),综上所述,m=6,n=5;【小题3】2p2+6p+5=(p2+2p+1)+(p2+4p+4)=(p+1)2+(p+2)2,令m
20、=p+2,n=p+1,则m2-n2=(p+2)2-(p+1)2=2p+3,2mn=2(p+2)(p+1)=2p2+6p+4,另外两个数分别为2p+3,2p2+6p+4,故答案为:2p+3,2p2+6p+4【点睛】本题主要考查了勾股数以及乘法公式的运用,掌握勾股数的定义以及完全平方公式的结构特征是解决问题的关键5、(1)100,18;(2)见解析;(3)(4)72人【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故
21、学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得【详解】(1)总人数为:(人); 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:(2)每天平均课外阅读时间为1.5小时的人数为:(人)补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为;(4)(人)估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有人【点睛】本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键