《2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专项攻克试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数专项攻克试卷(无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下正方形的边长是无理数的是( )A面积为9的正方形B面积为49的正方形C面积为8的正方形D面积为25的
2、正方形2、下列说法正确的是( )A0.01是0.1的平方根 B小于0.5C的小数部分是D任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方如此进行下去,得到的数会越来越趋近13、已知a,b|,c(2)3,则a,b,c的大小关系是( )AbacBbcaCcbaDacb4、如图,数轴上的点A,B,O,C,D分别表示数,0,1,2,则表示数的点P应落在( )A线段AB上B线段BO上C线段OC上D线段CD上5、如果一个正数a的两个不同平方根是2x2和63x,则这个正数a的值为( )A4B6C12D366、下列等式正确的是( )ABCD7、下列运算正确的是( )ABCD8、4的平方根是()A
3、2B2C2D49、下列判断中,你认为正确的是()A0的倒数是0B是分数C34D的值是310、9的平方根是()A3B3C3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正方形的面积为5,则它的边长为_2、计算: = _3、x、y表示两个数,规定新运算“*”如下:x*y2x3y,那么(3*5)*(4)_4、计算:_5、观察下列关于正整数的等式:7*5*23514108*6*34824185*4*2201008根据你发现的规律,请计算3*4*5_三、解答题(10小题,每小题5分,共计50分)1、已知是正数的两个平方根,且,求值,及的值2、计算下列各题:(1);(2)(
4、3)3、先化简:,再从中选取一个合适的整数代入求值4、解方程:(1)x281;(2)(x1)3275、对于有理数a,b,定义运算:(1)计算的值; (2)填空_:(填“”、“”或“”)(3)与相等吗?若相等,请说明理由6、大家知道是无理数,而无理数是无限不循环小数因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分因为的整数部分为1,所以的小数部分为参考小燕同学的做法,解答下列问题:(1)写出的小数部分为_;(2)已知与的小数部分分别为a和b,求a22abb2的值;(3)如果,其中x是整数,0y1,那么_(4)设无理数(m为
5、正整数)的整数部分为n,那么的小数部分为_(用含m,n的式子表示)7、计算:8、求方程中x 的值(x1)2 16 = 09、解方程:(1)4(x1)236;(2)8x32710、求下列各式中的值:(1); (2)-参考答案-一、单选题1、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8的正方形的边长为,是无理数,故本选项符合题意;D、面积为25的正方形的边长为5,是整数,属于有理数,故本
6、选项不合题意故选:C【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键2、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键3、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根
7、据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较【详解】解:由题意得:a=,b=,c-8,cba故选:C【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键4、B【分析】根据,得到,根据数轴与实数的关系解答【详解】解:,表示的点在线段BO上,故选:B【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键5、D【分析】根据正数平方根有两个,它们是互为相反
8、数,可列方程2x2+63x=0,解方程即可【详解】解:一个正数a的两个不同平方根是2x2和63x,2x2+63x=0,解得:x=4,2x2=24-2=8-2=6,正数a=62=36故选择D【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键6、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平
9、方根和立方根的概念是解题关键平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)7、B【分析】根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B【点睛】本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键8、A【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根【详解】解:4的平
10、方根是,故选:A【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键9、C【分析】根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项【详解】解:A、0不能作分母,所以0没有倒数,故本选项错误;B、属于无理数,故本选项错误;C、因为 91516,所以 34,故本选项正确;D、的值是3,故本选项错误故选:C【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念10、A【分析】根据平方根的定义进行判断即
11、可【详解】解:(3)299的平方根是3故选:A【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根二、填空题1、【分析】根据正方形面积根式求出边长,即可得出答案【详解】解:边长为: 故答案为【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根2、#【分析】根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算【详解】解:故答案为:【点睛】本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键3、-6【分析】根据找出新的运算方法,再根据新的运算方法计算即可【详解】故答案为:【点睛】本题考查了
12、新定义下的实数运算,解题关键是根据题目给出的式子,找出新的运算方法,再根据新的运算方法计算要求的式子4、1【分析】根据算术平方根的计算方法求解即可【详解】解:故答案为:1【点睛】此题考查了求解算术平方根,解题的关键是熟练掌握算术平方根的计算方法5、121520【分析】观察规律可知,算出3*4*5即可【详解】,故答案为:121520【点睛】本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键三、解答题1、, ,【分析】根据正数的平方根有2个,且互为相反数,以及求出与的值即可【详解】解:因为,是正数的两个平方根,可得:,把代入,解得:,所以,所以【点睛】此题考查了平方根,明确一个正数的
13、两个平方根互为相反数,和为0是解题的关键2、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加(1)解:原式;(2)解:原式;(3)解:【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a0),(a0),牢记法则是解题关键3、或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够
14、根据定义列出代数式,根据各数的取值范围求出a、b、y的值是解答的关键72x-2,2【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题【详解】解:原式=,x取整数,x可取2,当x=2时,原式=22-2=2【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法4、(1)x9;(2)x4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解【详解】解:(1)开方得:x9;(2)开立方得:x13,解得:x4【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的
15、关键平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)5、(1);(2)=;(3)相等,证明见详解【分析】(1)按照给定的运算程序,一步一步计算即可; (2)先按新定义运算,再比较大小; (3)按新定义分别运算即可说明理由【详解】解:(1);(2),=,故答案是:=;(3)相等,=【点睛】此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果6、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,然后可得,然后根据完全平方公式可
16、进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解【详解】解:(1),的整数部分为3,的小数部分为;故答案为;(2),与的小数部分分别为a和b,;(3)由可知,的小数部分为,x是整数,0y1,;故答案为;(4)无理数(m为正整数)的整数部分为n,的小数部分为,的小数部分即为的小数部分加1,为;故答案为【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键7、【分析】根据有理数的乘方运算,有理数的乘方运算,化简绝对值,最后进行实数的混合运算即可【详解】解:原式【点睛】本题考查了实数的混合运算,正
17、确的计算是解题的关键8、或【分析】根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数)【详解】解:(x1)2 16 = 0或解得或【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键9、(1)x4或2;(2)x【分析】(1)先变形为(x1)29,然后求9的平方根即可;(2)先变形为x3,再利用立方根的定义得到答案【详解】解:(1)方程两边除以4得,(x1)29,x13,x4或2;(2)方程两边除以8得,x3,所以x【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键10、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.【详解】解:(1) 解得: (2)或 解得:【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.