《2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数课时练习试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数课时练习试卷(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的方程(k29)x2+(k3)xk+6是一元一次方程,则k的值为()A9B3C3或3D32、若,
2、则的值为( )ABCD3、下列各式中正确的是( )ABCD4、以下正方形的边长是无理数的是( )A面积为9的正方形B面积为49的正方形C面积为8的正方形D面积为25的正方形5、10的算术平方根是( )A10BCD6、下列各数中,最小的数是( )A0BCD37、计算2130( )AB1C1D8、在以下实数:,3.1411,8,0.020020002中,无理数有()A2个B3个C4个D5个9、下列运算正确的是( )ABCD10、如图,数轴上的点A,B,O,C,D分别表示数,0,1,2,则表示数的点P应落在( )A线段AB上B线段BO上C线段OC上D线段CD上第卷(非选择题 70分)二、填空题(5小
3、题,每小题4分,共计20分)1、与最接近的整数为_2、若一个正数的平方根是3x+2和5x-10,则这个数是_3、在实数范围内分解因式:a23b2_4、给定二元数对(p,q),其中或1,或1三种转换器A,B,C对(p,q)的转换规则如下:(1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为_;(2)在图2所示的“C”组合转换器中,若当输入和时,输出结果均为0,则该组合转换器为“_C_”(写出一种组合即可)5、对于有理数定义一种新运算:,如,则的值为_三、解答题(10小题,每小题5分,共计50分)1、已知是正数的两个平方根,且,求值,及的值2、如图,将一个边长为a+b的正方形图形分割成四
4、部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(ab)满足a2+b257,ab12,求a+b的值3、我们知道,假分数可以化为整数与真分数的和的形式例如:=1+ 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”例如:像,这样的分式是假分式;像,这样的分式是真分式类似的,假分式也可以化为整式与真分式的和的形式 例如:;解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的
5、形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值4、计算:(1);(2)16(2)25、求下列各式中x的值(1)(x3)34(2)9(x2)2166、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天哪一种方法得到的钱数多?请说明理由(1年按365天计算)7、运算,满足(1)求的值;(2)求的值8、求下列各式中的值:(1); (2)9、计算:(-4)0+-6-+10、计算 -参考答案-一、单选题1、B【分析】含有一个未知数,且未知数的最
6、高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.【详解】解: 关于x的方程(k29)x2+(k3)xk+6是一元一次方程, 由得: 由得: 所以: 故选B【点睛】本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.2、B【分析】根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算【详解】解:,解得,所以故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键3、D【分析】由算术平方根的含义可判断A,B,C,由立方根的含义可判断D
7、,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;没有意义,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.4、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8的正方形的边长为,是无理数,故本选项符合题意;D、面积为25的正方形的边长为5,是整数
8、,属于有理数,故本选项不合题意故选:C【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键5、B【分析】直接利用算术平方根的求法即可求解【详解】解:的算术平方根是,故选:B【点睛】本题主要考查了算术平方根,解题的关键是掌握求解的运算法则6、C【分析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:,所给的各数中,最小的数是故选:C【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小7、D【分析】利用负整数指数幂和零指数
9、幂的意义进行化简计算即可【详解】解:原式1故选:D【点睛】本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键8、B【分析】根据“无限不循环的小数是无理数”可直接进行排除选项【详解】解:,在以下实数:,3.1411,8,0.020020002中,无理数有,0.020020002;共3个;故选B【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键9、B【分析】根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,
10、不符合题意;D、,计算错误,不符合题意;故选B【点睛】本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键10、B【分析】根据,得到,根据数轴与实数的关系解答【详解】解:,表示的点在线段BO上,故选:B【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键二、填空题1、【分析】先判断再根据从而可得答案.【详解】解: 而 更接近的整数是故答案为:5【点睛】本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.2、25【分析】根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数【详解】解:根据题意得:,解得:
11、,即,则这个数为25,故答案为:25【点睛】本题考查了平方根,熟练掌握平方根的定义是解本题的关键3、(a+)(a)a)(a+)【分析】根据平方差公式因式分解,运用2次,注意分解要彻底【详解】a23b2a2()2(a+)(a)【点睛】本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底4、1 A A 【分析】(1)利用转换器C的规则即可求出答案(2)利用转换器A、B、C的规则,写出一组即可【详解】(1)解:利用转换器C的规则可得:输出结果为1(2)解:当输入时,若对应A,此时经过A、C输出结果为(1,0),对应A,输出结果恰好为0当输入时,若对应A,此时经过A、C输出结
12、果为(0,1),对应A,输出结果恰好为0故答案为:1;A;A【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目5、#【分析】根据新定义运算的规律,先计算,所得的结果再与(-1)进行“”运算【详解】解:由题意得,故答案为:【点睛】本题考查新定义、有理数的混合运算等知识,是重要考点,掌握相关知识是解题关键三、解答题1、, ,【分析】根据正数的平方根有2个,且互为相反数,以及求出与的值即可【详解】解:因为,是正数的两个平方根,可得:,把代入,解得:,所以,所以【点睛】此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键2、(1)或;(2)9【分析】(1
13、)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:再把a2+b257,ab12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为 大正方形由两个小正方形与两个长方形组成, (2)由(1)得: a2+b257,ab12, 则 【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.3、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案(2)根据题意给出的变形方法即可求出答案(3)先将分式化为真分式与整
14、式的和,然后根据题意即可求出x的值【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一) (2); 故答案为:;(3),x2=1或x2=2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型4、(1)(2)【分析】(1)根据有理数的混合运算进行计算即可;(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可【详解】(1)原式(2)原式【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键5、(1)x=5;(2)x=-或x=【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2
15、)把x+2可做一个整体求出其平方根,进而求出x的值【详解】解:(1) (x3)34,(x-3)3=8,x-3=2,x=5;(2)9(x+2)2=16,(x+2)2=,x+2=,x=-或x=【点睛】本题考查了立方根和平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根6、第二种,理由见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n1元钱即可得总数,然后比较大小即可知哪种方案得到的多【详解】解:第一种方法:110365=3650元第二种方法:1+2+22+23+24+219=2201=1
16、048575分=10485.75元10485.753650第二种方法得到的钱多【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在7、(1)-10(2)-22【解析】(1)解:(2)解:【点睛】本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确8、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.【详解】解:(1) 解得: (2)或 解得:【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.9、9【分析】根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解【详解】解:原式【点睛】本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键10、【分析】直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案【详解】解:=【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键