《2021-2022学年度沪教版(上海)七年级数学第二学期第十二章实数定向训练试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪教版(上海)七年级数学第二学期第十二章实数定向训练试题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个正数a的两个不同平方根是2x2和63x,则这个正数a的值为( )A4B6C12D362、在以下实
2、数:,3.1411,8,0.020020002中,无理数有()A2个B3个C4个D5个3、在实数|3.14|,3,中,最小的数是()AB3C|3.14|D4、在实数,0.1010010001(相邻两个1中间依次多1个0)中,无理数有( )A2个B3个C4个D5个5、下列各式中,化简结果正确的是( )ABCD6、如果x1,那么x1,x,x2的大小关系是()Ax1xx2Bxx1x2Cx2xx1Dx2x1x7、9的平方根是()A3B3C3D8、下列各数中,比小的数是( )ABCD9、下列说法正确的是( )A是最小的正无理数B绝对值最小的实数不存在C两个无理数的和不一定是无理数D有理数与数轴上的点一一
3、对应10、若关于x的方程(k29)x2+(k3)xk+6是一元一次方程,则k的值为()A9B3C3或3D3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个正数的两个平方根分别为,则_ ,这个正数是_2、比较大小:_(用“”,“”或“”填空)3、计算:_4、用“*”定义一种新运算:对于任意有理数a和b,规定a*bab22a,则3*(2)_5、给定二元数对(p,q),其中或1,或1三种转换器A,B,C对(p,q)的转换规则如下:(1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为_;(2)在图2所示的“C”组合转换器中,若当输入和时,输出结果均为0,则该组合
4、转换器为“_C_”(写出一种组合即可)三、解答题(10小题,每小题5分,共计50分)1、解方程,求x的值(1) (2)2、求下列各式中的x:(1);(2)3、计算:(1);(2)4、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(ab)满足a2+b257,ab12,求a+b的值5、阅读下列材料:,的整数部分为3,小数部分为请你观察上述的规律后试解下面的问题:如果的整数部分为,的小数部分为,求的值6、计算:7、(1)计算:()(1)2
5、021+;(2)求x的值:(3x+2)318、运算,满足(1)求的值;(2)求的值9、直接写出结果:(1)_;(2)_;(3)的立方根_;(4)若x2(7)2,则x_10、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为43,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由-参考答案-一、单选题1、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x2+63x=0,解方程即可【详解】解:一个正数a的两个不同平方根是2x2和63x,2x2+63x=0,解得:x=4,2x2=24-2=8-2=6,正数a=62
6、=36故选择D【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键2、B【分析】根据“无限不循环的小数是无理数”可直接进行排除选项【详解】解:,在以下实数:,3.1411,8,0.020020002中,无理数有,0.020020002;共3个;故选B【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键3、D【分析】把数字从大到小排序,然后再找最小数【详解】解:|3.14|3.14|3|3,|-|,|3|3.14|,故选:D【点睛】本题考查实数大小比较,掌握比较方法是本题关键4、D【分
7、析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,0.1010010001(相邻两个1中间依次多1个0)是无理数,共个,故选:D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数5、D【分析】根据实数的运算法则依次对选项化简再判断即可【详解】A、,化简结果错误,与题意不符,故错误B、,化简结果错误,与题意不符,故错误C、
8、,化简结果错误,与题意不符,故错误D、,化简结果正确,与题意相符,故正确故选:D 【点睛】本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则6、A【分析】根据,即可得到,由此即可得到答案【详解】解:,故选A【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法7、A【分析】根据平方根的定义进行判断即可【详解】解:(3)299的平方根是3故选:A【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根8、A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.【详解】解:A.
9、-3,故B错误;C. -3,故C错误;D. -3,故D错误.故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.9、C【分析】利用正无理数,绝对值,以及数轴的性质判断即可【详解】解:、不存在最小的正无理数,不符合题意;、绝对值最小的实数是0,不符合题意;、两个无理数的和不一定是无理数,例如:,符合题意;、实数与数轴上的点一一对应,不符合题意故选:C【点睛】本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质10、B【分析】含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.【详解】解: 关于x的方程(
10、k29)x2+(k3)xk+6是一元一次方程, 由得: 由得: 所以: 故选B【点睛】本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.二、填空题1、 【分析】根据平方根的性质,可得 ,从而得到 ,即可求解【详解】解:一个正数的两个平方根分别为, ,解得: ,这个正数为 故答案为: ;【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键2、【分析】先求出,然后利用作差法得到,即可得到答案【详解】解:,故答案为:【点睛】本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法3、3【分析】根据实数的
11、运算法则即可求出答案【详解】解:原式【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键4、18【分析】根据a*bab22a,可得:3*(2)3(2)223,据此求出算式的值是多少即可【详解】解:a*bab22a,3*(2),3(2)223,346,126,18故答案为:18【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算5、1 A A 【分析】(1)利用转换器C的规则即可求出答案(2)利用转换器A、B、C的规则,写出
12、一组即可【详解】(1)解:利用转换器C的规则可得:输出结果为1(2)解:当输入时,若对应A,此时经过A、C输出结果为(1,0),对应A,输出结果恰好为0当输入时,若对应A,此时经过A、C输出结果为(0,1),对应A,输出结果恰好为0故答案为:1;A;A【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目三、解答题1、(1)或 ;(2)x【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x1可做一个整体求出其立方根,进而求出x的值【详解】解:(1), ,或 ;(2)8(x1)327,(x1)3,x1,x【点睛】本题考查了平方根、立方根熟练掌握平方根、立方根
13、的定义和性质是解题的关键2、(1)或(2)【分析】(1)根据平方根定义开方,求出两个方程的解即可;(2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可(1)开平方得, 解得,或(2)移项得,方程两边同除以8,得,开立方,得,【点睛】本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力3、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可【详解】解:(1),=,=1;(2),=,=,=,=【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实
14、数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键4、(1)或;(2)9【分析】(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:再把a2+b257,ab12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为 大正方形由两个小正方形与两个长方形组成, (2)由(1)得: a2+b257,ab12, 则 【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.5、a+b的值为25+【分析】由928.26,可得其整
15、数部分a=28,由272864,可求得的小数部分,继而可得a+b的值【详解】解:928.26,a=28,272864,34,b=-3,a+b=28+-3=25+,a+b的值为25+【点睛】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键6、1【分析】根据平方根与立方根可直接进行求解【详解】解:原式【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键7、(1);(2)【分析】(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;(2)利用立方根解方程即可得【详解】解:(1)原式;(2),【点睛】本题考查了立方根、算术平方根、利用立方根解方程等知识点,
16、熟练掌握各运算法则是解题关键8、(1)-10(2)-22【解析】(1)解:(2)解:【点睛】本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确9、(1)8;(2)0;(3)2;(4)【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可【详解】解:(1),故答案为:8;(2),故答案为:0;(3),的立方根是2,故答案为:2;(4)x2(7)2,x249,x=7故答案为:7【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等
17、等,熟知相关计算法则是解题的关键10、能,桌面长宽分别为28cm和21cm【分析】本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可【详解】能做到,理由如下:设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x3x=58812x2=588(cm)3x=37=21(cm)面积为900cm2的正方形木板的边长为30cm,28cm30cm,能够裁出一个长方形面积为588cm2并且长宽之比为43的桌面,答:桌面长宽分别为28cm和21cm【点睛】本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点