《2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数同步训练试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数同步训练试题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个数的算术平方根与它的立方根的值相同,则这个数是( )A1B0和1C0D非负数2、计算2130( )
2、AB1C1D3、的值等于( )AB2CD24、下列说法正确的是()A一个数的立方根有两个,它们互为相反数B负数没有立方根C任何数的立方根都只有一个D如果一个数有立方根,那么这个数也一定有平方根5、下列说法正确的是()A是分数B0.1919919991(每相邻两个1之间9的个数逐次加1)是有理数C3x2y+4x1是三次三项式,常数项是1D单项式的次数是2,系数为6、下列等式正确的是( )ABCD7、下列说法正确的是( )A5是25的算术平方根B的平方根是6C(6)2的算术平方根是6D25的立方根是58、如果x1,那么x1,x,x2的大小关系是()Ax1xx2Bxx1x2Cx2xx1Dx2x1x9
3、、下列运算正确的是( )ABCD10、的相反数是( )ABCD3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若的平方根是4,则a_2、当_ 时,分式的值为零3、近几年来魔术风靡我国,小亮发明了一个魔术盒,把一个实数对(,)放入其中,就得到一个数为231,如把(3,2)放入其中,就得到323214,若把(3,2)放入其中,得到数,再把(,4)放入其中,则得到的数是_4、如图,A,B,C在数轴上对应的点分别为a,1,其中a1,且ABBC,则|a|_5、下列各数:1、,0.1010010001(相邻两个1之间0的个数增加1),其中无理数的个数是_三、解答题(10小题,每小
4、题5分,共计50分)1、计算:(1)(2)()22、求下列各数的平方根:(1)121 (2) (3)(-13)2 (4) 3、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天哪一种方法得到的钱数多?请说明理由(1年按365天计算)4、求下列各式的值:(1)(2)(3)5、(1)计算(2)计算(3)解方程(4)解方程组6、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为a,b例如:和,因为,所以,则称和为一组团结数对,记为根据以上定义完成下列各题
5、:(1)找出2和2,1和3,2和这三组数中的团结数对,记为 ;(2)若5,x成立,则x的值为 ;(3)若a,b成立,b为按一定规律排列成1,3,9,27,81,243,这列数中的一个,且b与b左右两个相邻数的和是567,求a的值7、已知是正数的两个平方根,且,求值,及的值8、阅读下列材料:根据你观察到的规律,解决下列问题:(1)写出组中的第5个等式;(2)写出组的第n个等式,并证明;(3)计算:9、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果
6、图中的a,b(ab)满足a2+b257,ab12,求a+b的值10、若与互为相反数,且x0,y0,求的值-参考答案-一、单选题1、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题【详解】解:立方根等于它本身的实数0、1或1,算术平方根等于它本身的数是0和1,一个数的算术平方根与它的立方根的值相同的是0和1,故选B【点睛】主要考查了立方根,算术平方根的性质牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点2、D【分析】利用负整数指数幂和零指数幂的意义进行化简计算即可【详解】解:原式1故选:D【点睛】本题
7、主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键3、D【分析】由于表示4的算术平方根,由此即可得到结果【详解】解:4的算术平方根为2,的值为2故选D【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误弄清概念是解决本题的关键4、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义【详解】解:一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,A选项说法不正确;一个负数有一个负的立方根,B选项说法不正确;一个正数有一个正的立方根,一个负数有一个负的立方根
8、,0的立方根是0,C选项说法正确;一个负数有一个负的立方根,但负数没有平方根,D选项说法不正确综上,说法正确的是C选项,故选:C【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.5、D【分析】根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可【详解】解:A、是无限不循环小数,不是分数,故此选项不符合题意;B、0.1919919991(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;C、3x2y+4x1是三次三项式,常数项是-1,
9、故此选项不符合题意;D、单项式的次数是2,系数为,故此选项符合题意;故选D【点睛】本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数6、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题
10、意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)7、A【分析】如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可【详解】解:A、5是25的算术平方根,正确,符合题意;B、,6的
11、平方根是,错误,不符合题意;C、(6)2的算术平方根是6,错误,不符合题意;D、25的平方根是5,错误,不符合题意;故选:A【点睛】本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键8、A【分析】根据,即可得到,由此即可得到答案【详解】解:,故选A【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法9、B【分析】根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B【点睛】本题主要考查了立方根,算术平
12、方根,有理数的乘方,熟知相关计算法则是解题的关键10、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数【详解】解:的相反数是,故选:A【点睛】此题主要考查相反数,解题的关键是熟知实数的性质二、填空题1、256【分析】根据平方根与算术平方根的定义即可求解【详解】解:的平方根是4,故答案为:256【点睛】此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则a是b的算术平方根2、【分析】由分式的值为0的条件可得:,再解方程与不等式即可得到答案.【详解】解: 分式的值为零, 由得: 由得:且 综上: 故答案为:【点睛】本题
13、考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.3、5【分析】由魔术盒的性质可知m=(-3)2-3214,故(4,4)在魔术盒中的数字为(4)2-3415【详解】将(3,2)代入2-31有(-3)2-3214故m=4再将(4,4)代入2-31有(4)2-3415故答案为:5【点睛】本题考查了新定义下的实数运算,按照定义的运算公式代入计算即可4、【分析】先根据数轴上点的位置求出,即可得到,由此求解即可【详解】解:A,B,C在数轴上对应的点分别为a,1, ,故答案为:【点睛】本题主要考查了实数与数轴,解题的关键在于能够根据题意求出5、3
14、【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定【详解】在1、,0.1010010001(相邻两个1之间0的个数增加1)中,无理数有,0.1010010001(相邻两个1之间0的个数增加1)共3个故答案为:3【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键三、解答题1、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算【详解】(1)原式,;(2)原式,【点睛】此题考查了实数的运算,熟练掌握立方根和算术
15、平方根的意义是解本题的关键2、 (1)11; (2) ; (3)13; (4)8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解【详解】含有乘方运算先求出它的幂,再开平方(1)因为(11)2=121,所以121的平方根是11;(2),因为, 所以的平方根是;(3)(-13)2=169,因为(13)2=169,所以(-13)2的平方根是13;(4)-(-4)3=64,因为(8)2=64,所以-(-4)3的平方根是8【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数3、第二种,理由
16、见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n1元钱即可得总数,然后比较大小即可知哪种方案得到的多【详解】解:第一种方法:110365=3650元第二种方法:1+2+22+23+24+219=2201=1048575分=10485.75元10485.753650第二种方法得到的钱多【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在4、(1)6;(2);(3)【分析】利用立方与开立方
17、互为逆运算进行化简求值【详解】解:(1)(2)(3)【点睛】本题考查了立方与立方根解题的关键在于正确计算开方、立方与开立方的运算5、(1);(2);(3)或;(4)【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得【详解】解:(1)原式;(2)原式;(3),或;(4),由得:,解得,将代入得:,解得,故方程组的解为【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键6、(1)2,2,2,(2)(3)【解
18、析】(1)和2是一组团结数,即为,和3不是一组团结数,和是一组团结数,即为,故答案为:,;(2)若5,x成立,则故答案为:;(3)设b左面相邻的数为x,b为3x,b右面相邻的数为9x由题意可得 解得 x81 所以 b243 由于a,b成立,则a243243a,解得【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键7、, ,【分析】根据正数的平方根有2个,且互为相反数,以及求出与的值即可【详解】解:因为,是正数的两个平方根,可得:,把代入,解得:,所以,所以【点睛】此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键8、(
19、1);(2),证明见解析;(3)【分析】(1)根据前几个等式的变化规律即可求解;(2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;(3)根据前三组观察出的变化规律求解即可(1)解:,第5个等式为;(2)解:,第n个等式为,证明:右边=,左边=,右边=左边,;(3)解:=,=,=,=【点睛】本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键9、(1)或;(2)9【分析】(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:再把a2+b257,ab12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为 大正方形由两个小正方形与两个长方形组成, (2)由(1)得: a2+b257,ab12, 则 【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.10、【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形【详解】由题意可得:,即,【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键