《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测评练习题(无超纲).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解章节测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.2、下列分解因式正确的是()A.B.C.D.3、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.4、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)2B.x210x+16(x4)2C.x3xx(x21)D.2xy+
2、6y22y(x+3y)5、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解6、下列因式分解正确的是( )A.B.C.D.7、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x38、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+
3、(2)3012300+230126019、下列多项式因式分解正确的是( )A.B.C.D.10、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b211、下列各式中,能用完全平方公式因式分解的是( )A.B.C.D.12、下列各组式子中,没有公因式的是()A.a2+ab与ab2a2bB.mx+y与x+yC.(a+b)2与abD.5m(xy)与yx13、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)214、已知下列多项式:;.其中,能用完全平方公式进行因式
4、分解的有( )A.B.C.D.15、下列因式分解正确的是( )A.3ab26ab3a(b22b)B.x(ab)y(ba)(ab)(xy)C.a2+2ab4b2(a2b)2D.a2+a(2a1)2二、填空题(10小题,每小题4分,共计40分)1、因式分解:_2、分解因式:x41_3、因式分解:=_4、分解因式:9a2+b2_5、RSA129是一个129位利用代数知识产生的数字密码曾有人认为,RSA129是有史以来最难的密码系统,涉及数论里因数分解的知识,在我们的日常生活中,取款、上网等都需要密码,有一种用“因式分解”法产生的密码方便记忆如,多项式x4y4,因式分解的结果是(xy)(x+y)(x2
5、+y2)若取x9,y9时,则各因式的值分别是:xy0,x+y18,x2+y2162,于是就可以把“018162”作为一个六位数的密码对于多项式4x3xy2,若取x10,y10,请按上述方法设计一个密码是 _(设计一种即可)6、将12张长为a,宽为b(ab)的小长方形纸片,按如图方式不重叠地放在大长方形ABCD内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的,则小长方形纸片的长a与宽b的比值为 _7、分解因式:x2y6xy9y_8、若m2n2021,n2m2021(mn),那么代数式m32mnn3的值 _9、因式分解a39a_10、6x3y23x2y3分解因式时,应提取的公因式是_
6、三、解答题(3小题,每小题5分,共计15分)1、分解因式:(x2y)(2x3y)2(2yx)(5xy)2、因式分解:x316x3、因式分解(1)3a3+6a2b3ab2;(2)4a2(xy)+9b2(yx);(3)a48a2b2+16b4-参考答案-一、单选题1、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是
7、解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.3、C【分析】根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不
8、能用公式法因式分解;=,能用公式法因式分解;=,能用公式法因式分解.能用公式法分解因式的是故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.4、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法
9、分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.5、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方
10、差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.7、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】
11、本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.8、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.9、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解
12、因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.10、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.11、C【分析】根据完全平方公式的特点判断即可;【详解】不能用完全平方公式,故A不符合题意;不能用完全平方公式,故B不符合题意;,能用完全平方公式,故C符合题意;不能用完全平方公式,故D不符合题意;故答案选C.【点睛】本题主要考查了因式
13、分解公式法的判断,准确判断是解题的关键.12、B【分析】公因式的定义:多项式中,各项都含有一个公共的因式,因式叫做这个多项式各项的公因式.【详解】解:、因为,所以与是公因式是,故本选项不符合题意;、与没有公因式.故本选项符合题意;、因为,所以与的公因式是,故本选项不符合题意;、因为,所以与的公因式是,故本选项不符合题意;故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.13、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边
14、的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.14、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.15、D【分析】根据因式分解的定义及方法即可得出答
15、案.【详解】A:根据因式分解的定义,每个因式要分解彻底,由3ab26ab3a(b22b)中因式b22b分解不彻底,故A不符合题意.B:将x(ab)y(ba)变形为x(ab)+y(ab),再提取公因式,得x(ab)y(ba)x(ab)+y(ab)(ab)(x+y),故B不符合题意.C:形如a22ab+b2是完全平方式,a2+2ab4b2不是完全平方式,也没有公因式,不可进行因式分解,故C不符合题意.D:先将变形为,再运用公式法进行分解,得,故D符合题意.故答案选择D.【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式.二、填空题1、【分析】根据因式分解的定义,
16、观察该多项式存在公因式,故.【详解】解:.故答案为:.【点睛】本题主要考查用提公因式法进行因式分解,解题的关键是熟练掌握提取公因式法.2、.【分析】首先把式子看成x2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x41(x21)(x21)(x21)(x1)(x1).故答案是:(x21)(x1)(x1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.3、【分析】根据完全平方公式分解即可.【详解】解: =,故答案为:.【点睛】本题考查了用公式法进行因式分解,解题关键是熟练运用完全平方公式进行因式分解.4、 (b+3a)(b-3a)【分析】原式利用平方差公式分解即可
17、.【详解】解:-9a2+b2= b2-9a2=(b+3a)(b-3a).故答案为:(b+3a)(b-3a)【点睛】本题考查了运用平方差公式分解因式,熟练掌握平方差公式的结构特征是解本题的关键.5、101030(或103010或301010)【分析】先将多项式4x3xy2因式分解,再将x10,y10代入,求得各个因式的值,排列即可得到一个六位数密码.【详解】解:4x3xy2x(4x2y2)x(2xy)(2x+y),当x10,y10时,x10,2xy10,2x+y30,将3个数字排列,可以把101030(或103010或301010)作为一个六位数的密码,故答案为:101030(或103010或3
18、01010).【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.6、4【分析】用a,b分别表示出大长方形的长和宽,根据阴影部分的面积是大长方形面积的,列式计算即可求解.【详解】解:根据题意得:AD=BC=8b+a,AB=CD=2b+a,阴影部分的面积是大长方形面积的,非阴影部分的面积是大长方形面积的,整理得:,即,则小长方形纸片的长a与宽b的比值为4.故答案为:4.【点睛】本题主要考查了整式的混合运算的应用,以及因式分解的应用,解题的关键是弄清题意,列出长方形面积的代数式及整式的混合运算顺序与运算法则.7、【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法
19、,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:x2y6xy9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.8、-2021【分析】将两式m2=n+2021,n2=m+2021相减得出m+n=-1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.【详解】解:将两式m2=n+2021,n2=m+2021相减,得m2-n2=n-m,(m+n)(m-n)=n-m,(因为mn,所以m-n0),m+n=-1,将m2=n+2021两边乘以m,得m=mn+2021m
20、,将n2=m+2021两边乘以n,得n=mn+2021n ,由+得:m+n=2mn+2021(m+n),m+n-2mn=2021(m+n),m+n-2mn=2021(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m3-2mn+n3的降次处理是解题关键.9、;【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案.【详解】a39a=故答案为:【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.10、3x2y2【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-
21、3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故答案为:3x2y2.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.三、解答题1、【分析】根据提公因式法分解因式求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:(x2y)(2x3y)2(2yx)(5xy)【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、
22、x(x+4)(x-4).【分析】原式提取x,再利用平方差公式继续分解即可.【详解】解:x316x=x(x2-16)=x(x+4)(x-4).【点睛】本题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、(1)3a(ab)2;(2)(xy)(2a+3b)(2a3b);(3)(a+2b)2(a2b)2【分析】(1)直接提取公因式3a,再利用完全平方公式分解因式得出答案;(2)直接提取公因式xy,再利用平方差公式分解因式即可;(3)直接利用完全平方公式分解因式,再利用平方差公式分解因式得出答案.【详解】解:(1)原式3a(a22ab+b2)3a(ab)2;(2)原式(xy)(4a29b2)(xy)(2a+3b)(2a3b);(3)原式(a24b2)2(a+2b)(a2b)2(a+2b)2(a2b)2.【点睛】本题主要考查提公因式法因式分解以及公式法因式分解,积的乘方的逆运算,熟知平方差公式以及完全平方公式的结构特点是解题的关键.