《2021-2022学年基础强化北师大版八年级数学下册第一章三角形的证明定向测试试题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版八年级数学下册第一章三角形的证明定向测试试题(精选).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,AB=AC,ADBC于D ,BEAC于E,下列结论不成立的是()A1=2BEBC=2CBAC
2、=AFEDAFE=C2、如图所示,为线段上一动点(不与点,重合),在同侧分别作正和正,与交于点,与交于点,与交于点,连接以下四个结论:;是等边三角形其中正确的是( )ABCD3、如图,在ABC中,AC的垂直平分线MN交BC于点N,且,则的度数是( ) A45B50C55D604、下列四组数据中,不能作为直角三角形的三边长的是( )A5,13,12B6,8,10C9,12,15D3,4,65、如图,在ABC中,AB=AC,D是BC的中点,B=35,则BAD=( )A110B70C55D356、等腰三角形周长为17cm,其中一边长为5cm,则该等腰三角形的腰长为()A6cmB7cmC5cm或6cm
3、D5cm7、如图,在RtABC中,ACB=90,BAC=30,ACB的平分线与ABC的外角的平分线交于E点,连接AE,则AEC的度数是( )A45B40C35D308、如图,在ABC中,的垂直平分线交于点,垂足为,若,则的长为( )A2cmB4cmC5cmD6cm9、如图,在ABC中,BD平分ABC,C2CDB,AB12,CD3,则ABC的周长为()A21B24C27D3010、已知等腰三角形的两条边长分别为4和9,则它的周长为( )A17B22C23D17或22第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点D是ABC内一点,ADCD,BADBCD,则以下结论
4、:ABAC;DACDCA;BD平分ABC;BD与AC的位置关系是互相垂直其中正确的是:_2、如图,是ABC的角平分线,则的长为_3、已知ABC是等腰三角形,若A70,则B_4、如图,在ABC中,ACB=90,B =30,CD是高若AD=2,则BD=_5、如图,在ABC中,的平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点恰好重合,则的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,RtABC中,A90,AB8cm,AC6cm,P是从A点出发的动点,沿若A-B-C-A在三边上运动一周,速度为每秒2cm设P点的运动时间为t秒(1)当t6.5秒时,求出CP的长(2)是否存在
5、t的值,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等?若存在,求出t的值;若不存在,请说明理由(3)当t 时,ACP为等腰三角形(直接给出答案)2、(问题背景)学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边ABC,D是ABC外一点,连接AD、CD、BD,若ADC=30,AD=3,BD=5,求CD的长该小组在研究如图2中OMNOPQ中得到启示,于是作出如图3,从而获得了以下的解题思路,请你帮忙完善解题过程解:如图3所示,以DC为边作等边CDE,连接AEABC,DCE是等边三角形,BC=AC,DC=EC,BCA=DCE=60BCA+ACD= +ACD, ,A
6、E=BD=5,ADC=30,CDE=60,ADE=ADC+CDE=90AD=3,CD=DE= (尝试应用)如图4,在ABC中,ABC=45,AB=2,以AC为直角边,A为直角顶点作等腰直角ACD,求BD的长(拓展创新)如图5,在ABC中,AB=4,AC=8,以BC为边向往外作等腰BCD,BD=CD,BDC=120,连接AD,求AD的最大值3、如图,已知锐角ABC(1)尺规作图:作ABC的高AD(保留作图的痕迹,不要求写出作法);(2)若,AB+BD与DC有什么关系?并说明理由4、如图所示,BECF,DEAB于E,DFAC于F,且BDCD 求证:(1)BDECDF;(2)AD是BAC的平分线5、
7、数学课上,王老师布置如下任务:如图,已知MAN45,点B是射线AM上的一个定点,在射线AN上求作点C,使ACB2A下面是小路设计的尺规作图过程作法:作线段AB的垂直平分线l,直线l交射线AN于点D;以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA ,( )(填推理的依据)AABD,BDCAABD2ABCBD,ACB ,( )(填推理的依据)ACB2A-参考答案-一、单选题1、C【分析】由,可得AD平分,判断出,再根据于D
8、 ,于E,可知,可判断出和,即可得到答案【详解】解:A、在中,AD平分,选项说法正确,不符合题意;B、于D ,于E,选项说法正确,不符合题意;C、是的外角,无法得到,无法得到,选项说法错误,符合题意;D、在中,在中,选项说法正确,不符合题意;故选C【点睛】本题考查了等腰三角形的性质、同角的余角相等的性质及三角形的外角的性质,解决问题的关键是熟练运用相关性质2、A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案【详解】解:和是正三角形,故正确,故正确;,故正确;,是等边三角形,故正确;故选:A【点睛】此题主要考查等边三角
9、形的判定与性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理3、B【分析】连接AN,根据线段垂直平分线的性质得到NANC,得到NACC,根据三角形内角和定理列式计算,得到答案【详解】解:连接AN,NM是AC的垂直平分线,NANC,NACC,ANB2C, AB+BNBC,NC+BNBC,ABNC,ABAN,BANB2C,由三角形内角和定理得,B+C+BAC180,即2C+C+105180,解得,C25,B50故选:B【点睛】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键4、D【分析】根据勾股定理的逆定理进行判断
10、即可【详解】解:A、,故A不符合题意B、,故B不符合题意C、,故C不符合题意D、,故D符合题意故选:D【点睛】本题主要是考查了勾股定理的逆定理,熟练利用勾股定理来判定三角形是否为直角三角形,是解决本题的关键5、C【分析】根据等腰三角形三线合一的性质可得ADBC,然后利用直角三角形两锐角互余的性质解答【详解】解:ABAC,D是BC的中点,ADBC,B35,BAD903555故选:C【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键6、C【分析】分为两种情况:5cm是等腰三角形的腰或5cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行
11、分析能否构成三角形【详解】若5cm为等腰三角形的腰长,则底边长为17557(cm),5+57,符合三角形的三边关系;若5cm为等腰三角形的底边,则腰长为(175)26(cm),此时三角形的三边长分别为6cm,6cm,5cm,符合三角形的三边关系;该等腰三角形的腰长为5cm或6cm,故选:C【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边7、D【分析】作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,根据角平分线的性质和判定得到AE平分FAG,求出EAB的度数,根据角平分线的定义求出ABE的度数,根据三角形内角和定理计算得
12、到的度数,再计算出的度数即可【详解】解:作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,CE平分ACB,BE平分ABD,EF=EH,EG=EH,EF=EG又EFAC,EGAB,AE平分FAG,BAC=30,BAF=150,EAB=75,ACB=90,BAC=30,ABC=60,ABH=120,又BE平分ABD,ABE=60,AEB=180-EAB-ABE=45,ACB=90,BAC=30,ABD=120,CE是ACB的平分线,BE是ABC的外角平分线,EBD=60,BCE=45,CEB=60-45=15 故选:D【点睛】题考查的是角平分线的性质,掌握角的平分线上的点到角
13、的两边的距离相等是解题的关键,注意三角形内角和定理和角平分线的定义的正确运用8、D【分析】由题意知,可求出的值【详解】解:由题意知在中又 故选D【点睛】本题考察了垂直平分线的性质,角的直角三角形的性质解题的关键在于灵活运用垂直平分线与角的直角三角形的性质9、C【分析】根据题意在AB上截取BE=BC,由“SAS”可证CBDEBD,可得CDB=BDE,C=DEB,可证ADE=AED,可得AD=AE,进而即可求解【详解】解:如图,在AB上截取BEBC,连接DE,BD平分ABC,ABDCBD,在CBD和EBD中,CBDEBD(SAS),CDBBDE,CDEB,C2CDB,CDEDEB,ADEAED,A
14、DAE,ABC的周长AD+AE+BE+BC+CDAB+AB+CD27,故选:C【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键10、B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:(1)如果腰长为4,则三边是:4,4,9;不满足三角形两边之和大于第三边的性质,不成立;(2)如果腰长为9,则三边是:4,9,9;满足三角形两边之和大于第三边的性质,成立;周长=9+9+4=22故选:B【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;已
15、知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键二、填空题1、【分析】由题意知,为等腰三角形,为等腰三角形,可知BD是的平分线,BD与AC互相垂直,进而得到结果【详解】解:ADCDDACDCA故正确;BADBCDBAD+DACBCD+DCA即BACBCAABBC故错误;ABBC,ADDCBD垂直平分AC故正确;BD平分ABC,BD与AC的位置关系是互相垂直故正确;故答案为:【点睛】本题考查了等腰三角形的性质与判定,角平分线,垂直平分线等知识解题的关键在于灵活运用等腰三角形的性质与判定2、#【分析】过点作于点,先用勾
16、股定理的逆定理证明是直角三角形,进而根据角平分线的性质可得,证明,设,在中,利用勾股定理求得的值,进而在中,勾股定理即可求得的值【详解】解:如图,过点作于点,是直角三角形是的角平分线,在与中设,则在中,即解得在中故答案为:【点睛】本题考查了角平分线的性质与判定,勾股定理与勾股定理的逆定理,证明三角形全等,掌握以上知识是解题的关键3、或或【分析】分是顶角,是底角,是底角,是底角,是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得【详解】解:由题意,分以下三种情况:当是顶角,是底角时,则;当是底角,是底角时,则;当是底角,是顶角时,则;综上,的度数为或或,故答案为:或或【点睛
17、】本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键4、6【分析】求出A,求出ACD,根据含30度角的直角三角形性质求出AC2AD,AB2AC,求出AB即可【详解】解:CDAB,ACB90,ADC90ACB,B30,A90B60,ACD90A30,AD2,AC2AD4,AB2AC8,BDABAD826,故答案为:6【点睛】本题主要考查的是含角的直角三角形性质和三角形内角和定理的应用,关键是求出AC2AD,AB2AC5、140【分析】连接OB、OC,根据角平分线的定义求出BAO,根据等腰三角形两底角相等求出ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OAOB,
18、根据等边对等角可得ABOBAO,再求出OBC,然后判断出点O是ABC的外心,根据三角形外心的性质可得OBOC,再根据等边对等角求出OCBOBC,根据翻折的性质可得OECE,然后根据等边对等角求出COE,再利用三角形的内角和定理列式计算即可【详解】解:如图:连接OB、OC,BAC70,AO为BAC的平分线,BAOBAC7035,又ABAC,ABC(180BAC)(18070)55,DO是AB的垂直平分线,OAOB,ABOBAO35,OBCABCABO553520,AO为BAC的平分线,ABAC,OBOC,点O在BC的垂直平分线上,又DO是AB的垂直平分线,点O是ABC的外心,OCBOBC20,将
19、C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,OECE,COEOCB20,在OCE中,OEC180COEOCB1802020140,故答案为:140【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,作辅助线,构造出等腰三角形是解题的关键三、解答题1、(1)5cm;(2)t5.5;(3)3或5.4或6或6.5【分析】(1)先根据速度时间求出点P的路程,由勾股定理求出BC的长,进而求出CP的长;(2)由等面积法求得AD的长,要是t秒时ABP的面积与时间为(t+2)秒时ACP的面积相等可以判断
20、出点P在BC 上,分别表示出ABP、ACP的面积,列出关于t的方程,解除方程即可;(3)分别讨论点P在AB、BC、上存在的所有情况即可得出结论【详解】解:(1)P点速度为每秒2cm运动时间为t6.5秒时,点P的路程为:26.513cmRtABC中,A90,AB8cm,AC6cm,cm,AB+BC8+1018cm,CP18135cm(2)当t5.5秒时,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等,理由如下:过点A作ADBC于点D,即6810AD,解得ADcm,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等,点P在BC上4t7,即,解得:t5.5秒(
21、3)当点P在AB上时,如图,要使ACP为等腰三角形,ACAP1,即2t6,解得:t3,当点P在BC上时,当ACAP时,如图ACAP26,AD4.8,DP2DC,AB+BP2AB+BCP2C183.63.610.8cm,2t10.8,解得:t5.4,当ACCP时,此时ACCP36cm,BP31064cm,AB+BP38+412cm,2t12,解得:t6,当PCPA时,过点P4作P4GAC于点G,AB/P4G,AGCG,点P4为BC的中点,此时AB+BP48+513cm,即2t13,解得:t6.5,综上所述:点t3或5.4或6或6.5时,ACP为等腰三角形,故答案为:3或5.4或6或6.5【点睛】
22、本题考查了勾股定理,等腰三角形的性质和判定,平行线段的性质等知识,熟练掌握等腰三角形的判定解题的关键2、 问题背景;尝试应用;拓展创新【分析】问题背景根据等式的性质,三角形全等的判定与性质,勾股定理填空即可;尝试应用以为直角边,A为直角顶点作等腰,连接,进而证明,根据勾股定理求得,即可求得的长;拓展创新 以为腰,作等腰,过点作,同理证明,进而根据含30度角的直角三角形的性质,勾股定理求得,根据三角形三边关系确定最大值时,三点共线,进而即可求得的最大值【详解】问题背景 解:如图3所示,以为边作等边,连接,是等边三角形,尝试应用 解:如图4所示,以为直角边,A为直角顶点作等腰,连接,是等腰直角三角
23、形, 拓展创新解:如图,以为腰,作等腰,过点作,即,是等腰三角形,则当取得最大值时,取得最大当三点共线时,取得最大值,如图,【点睛】本题考查了等腰三角形的性质与判定,三角形全等的性质与判定,勾股定理,线段最值问题,从题干部分理解作等腰三角形辅助线是解题的关键3、(1)见详解;(2),理由见详解【分析】(1)以点A圆心,适当长为半径画弧,交BC于两点,再以这两点为圆心,大于这两点的距离的一半为半径画弧,交于一点,然后连接即可;(2)在DC上截取DE=BD,连接AE,由题意易得AB=AE,则有B=AEB,进而可得AE=EC,最后问题可求解【详解】解:(1)如图所示,即为所求;(2),理由如下:在D
24、C上截取DE=BD,连接AE,如图所示:,AB=AE,B=AEB,AE=EC=AB,【点睛】本题主要考查等腰三角形的性质与判定及线段垂直平分线的性质定理,熟练掌握等腰三角形的性质与判定及线段垂直平分线的性质定理是解题的关键4、(1)见解析;(2)见解析【分析】(1)由HL证明RtBDERtCDF即可;(2)由全等三角形的性质得DE=DF,再由角平分线的判定即可得出结论【详解】证明:(1)DEAB,DFAC,DEB=DFC=90,在RtBDE和RtCDF中,RtBDERtCDF(HL);(2)由(1)得:BDECDF,DE=DF,DEAB,DFAC,AD是BAC的平分线【点睛】本题考查了全等三角
25、形的判定与性质以及角平分线的判定,证明RtBDERtCDF是解题的关键5、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可(2)根据垂直平分线的性质以及等边对等角进行解答即可【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示; (2)解:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)AABD,BDCAABD2ABCBD,ACBBDC ,(等边对等角)(填推理的依据)ACB2A【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键