2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明定向测评试题.docx

上传人:知****量 文档编号:28147353 上传时间:2022-07-26 格式:DOCX 页数:36 大小:1.03MB
返回 下载 相关 举报
2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明定向测评试题.docx_第1页
第1页 / 共36页
2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明定向测评试题.docx_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明定向测评试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明定向测评试题.docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第一章三角形的证明定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在等腰中,BD平分,交AC于点D,若cm,则的周长为( )A8cmB10cmC12cmD14cm2、如

2、图,等腰ABC中,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:;是等边三角形;其中正确的是( )ABCD3、如图,点E在线段AB上,则的度数为()A20B25C30D404、点P在AOB的平分线上(不与点O重合),PCOA于点C,D是OB边上任意一点,连接PD若PC=3,则下列关于线段PD的说法一定正确的是()APD=POBPD3C存在无数个点D使得PD=PCDPD35、如图,在三角形,是上中点,是射线上一点是上一点,连接,点在上,连接,则的长为( )AB8CD96、如图,在等腰ABC中,AB=BC,ABC=108,点D为AB的中点,DEAB交AC于点E,若AB=6,则

3、CE的长为( )A4B6C8D107、如图,RtABC中,C90,利用尺规在BC,BA上分别截取BE,BD,使BEBD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在CBA内交于点F;作射线BF交AC于点G若CG1,P为AB上一动点,则GP的最小值为()A无法确定BC1D28、已知等腰三角形的两条边长分别为4和9,则它的周长为( )A17B22C23D17或229、ABC中,的对边分别为a,b,c,下列条件能判断ABC是直角三角形的是( )AB,CD10、如图,在中,为的中点,为上一点,为延长线上一点,且有下列结论:;为等边三角形;其中正确的结论是( )ABCD第卷(非选择题 70分)二

4、、填空题(5小题,每小题4分,共计20分)1、如图,点G分别为AD与CF的中点,若,则AC=_2、如图,已知ABC是等边三角形,边长为3,G是三角形的重心,那么GA =_3、由于木质衣架没有柔性,在挂置衣服的时候不太方便操作小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可如图2,衣架杆,若衣架收拢时,如图1,若衣架打开时,则此时,两点之间的距离扩大了_4、如图,将一副三板按图所示放置,DAEABC90,D45,C30,点E在AC上,过点A作AFBC交DE于点F,则_5、已知ABC是等腰三角形,若A70,则B_三、解答题(5小题,每小题10分,共计50分)1、如图1,CACB,CD

5、CE,ACB=DCE=,AD、BE交于点H,连CH(1)AHE_(用表示)(2)如图2,连接CH,求证:CH平分AHE;(3)如图3,若=60,P,Q 分别是AD,BE的中点,连接CP,PQ,CQ请判断三角形PQC的形状,并证明2、已知:如图,在ABC中,ABAC,点D、E分别在边BC,AC上,ADAE(1)若BAD30,则EDC ;若EDC20,则BAD (2)设BADx,EDCy,写出y与x之间的关系式,并给出证明3、教材呈现:如图是华师版八年级上册数学教材第94页的部分内容请根据教材中的分析(1)结合图,写出“线段的垂直平分线质定理”完整的证明过程(2)定理应用:如图,在ABC中,AB=

6、AC,AB的垂直平分线交AB于N,交AC于M连接MB,若AB=8cm,MBC的周长是14cm求BC的长;点P是直线MN上一动点,在运动的过程中,由P,B,C构成的PBC的周长是否存在最小值?若存在,标出点P的位置,并求PBC的周长最小值;若不存在,说明理由4、如图,在平面直角坐标系xoy中,OAB的顶点O是坐标原点,点A在第一象限,点B在x轴的正半轴上,OAB=90且OA=AB,OB=6,点C是直线OC上一点,且在第一象限,OB,OC满足关系式OB+10OC=26(1)请直接写出点A的坐标;(2)点P是线段OB上的一个动点(点P不与点O重合),过点P的直线l与x轴垂直,直线l交边OA或边AB于

7、点Q,交OC于点R设点P的横坐标为t,线段QR的长度为m当t=6时,直线l恰好过点C求直线OC的函数表达式;当时,请直接写出点P的坐标;当直线RQ与直线OC所组成的角被射线RA平分时,请直接写出t的值5、如图,已知ABC是等边三角形,BD是AC上的高线作AEAB于点A,交BD的延长线于点E取BE的中点M,连结AM(1)求证:AEM是等边三角形;(2)若AE1,求ABC的面积-参考答案-一、单选题1、B【分析】根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明RtABD和RtEBD全等,根据全等三角形对应边相等可得AB=BE,然后求出DEC的周长=BC,再根据BC=10cm,即

8、可得出答案【详解】解:BD是ABC的平分线,DEBC,A=90,在RtABD和RtEBD中,AB=BE,DEC的周长=DE+CD+CE=AD+CD+CE,=AC+CE,=AB+CE,=BE+CE,=BC,BC=10cm,DEC的周长是10cm故选:B【点睛】本题考查的是角平分线的性质,全等三角形的判定与性质,熟记各性质并求出DEC的周长=BC是解题的关键2、A【分析】利用等边对等角得:APOABO,DCODBO,则APO+DCOABO+DBOABD,据此即可求解;因为点O是线段AD上一点,所以BO不一定是ABD的角平分线,可作判断;证明POC60且OPOC,即可证得OPC是等边三角形;证明OP

9、ACPE,则AOCE,得ACAE+CEAO+AP【详解】解:如图1,连接OB,ABAC,ADBC,BDCD,BADBAC12060,OBOC,ABC90BAD30OPOC,OBOCOP,APOABO,DCODBO,APO+DCOABO+DBOABD30,故正确;由知:APOABO,DCODBO,点O是线段AD上一点,ABO与DBO不一定相等,则APO与DCO不一定相等,故不正确;APC+DCP+PBC180,APC+DCP150,APO+DCO30,OPC+OCP120,POC180(OPC+OCP)60,OPOC,OPC是等边三角形,故正确;如图2,在AC上截取AEPA,PAE180BAC6

10、0,APE是等边三角形,PEAAPE60,PEPA,APO+OPE60,OPE+CPECPO60,APOCPE,OPCP,在OPA和CPE中,OPACPE(SAS),AOCE,ACAE+CEAO+AP,ABAO+AP,故正确;正确的结论有:,故选:A【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键3、C【分析】根据全等三角形的性质可证得BC=CE,ACB=DCE即ACD=BCE,根据等腰三角形的性质和三角形的内角和定理求解B=BEC和BCE即可【详解】解:,BC=CE,ACB=DCE,B=BEC,ACD=BCE,

11、ACD=BCE=180275=30,故选:C【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键4、D【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为3,再根据垂线段最短解答即可【详解】解:点P在AOB的平分线上,PCOA于点C,PC=3, 点P到OB的距离为3,点D是OB边上的任意一点,根据垂线段最短,PD3故选:D【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键5、D【分析】延长EA到K,是的AK=AG,连接CK,先由勾股定理的逆定理可以得到ABC是等

12、腰直角三角形,BAC=90,ACB=ABC=45,由BF=FE,得到FBE=FEB,设BFE=x,则,然后证明CB=FC=FE,得到FBC=FCA,AFB=AFC则,即可证明,推出;设,证明ABGACK,得到,即可推出ECK=K,得到EK=EC,则,由此即可得到答案【详解】解:延长EA到K,是的AK=AG,连接CK,在三角形,ABC是等腰直角三角形,BAC=90,ACB=ABC=45,BF=FE,FBE=FEB,设BFE=x,则,H是BC上中点,F是射线AH上一点,AHBC,AH是线段BC的垂直平分线,FAC=45,CB=FC=FE,FBC=FCA,AFB=AFC,设,AG=AK,AB=AC,

13、KAC=GAB=90,ABGACK(SAS),ECK=K,EK=EC,故选D【点睛】本题主要考查了勾股定理和勾股定理的逆定理,等腰三角形的性质与判定,线段垂直平分线的性质与判定,全等三角形的性质与判定,三角形内角和定理等等,熟知相关知识是解题的关键6、B【分析】由等腰三角形的等边对等角性质即可得出CAB=BCA=36,再由垂直平分线定理可知CAB=ABE=36,再由三角形内角和为180即可推出CEB=EBC,故CE=BC=AB=6【详解】AB=BC,ABC=108CAB=BCA=36又点D为AB的中点,DEAB交AC于点EAE=BEBC=CECE=AB=6故选:B【点睛】本题考查了等腰三角形的

14、性质、垂直平分线的性质、三角形内角和的性质,熟悉使用有关性质是解题的关键7、C【分析】如图,过点G作GHAB于H根据角平分线的性质定理证明GHGC1,利用垂线段最短即可解决问题【详解】解:如图,过点G作GHAB于H由作图可知,GB平分ABC,GHBA,GCBC,GHGC1,根据垂线段最短可知,GP的最小值为1,故选:C【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键8、B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:(1)如果腰长为4,则三边是:

15、4,4,9;不满足三角形两边之和大于第三边的性质,不成立;(2)如果腰长为9,则三边是:4,9,9;满足三角形两边之和大于第三边的性质,成立;周长=9+9+4=22故选:B【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键9、D【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可【详解】解:A、,且ABC180,60,故ABC不是直角三角形;B、,a2b2c2,故ABC不是直角三角形;C、A:B:C3:4:5,且ABC180,最大角C7590,故ABC

16、不是直角三角形;D、,故ABC是直角三角形;故选:D【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2b2c2,那么这个三角形就是直角三角形也考查了三角形内角和定理10、C【分析】连接BP,由等腰三角形的性质和线段的中垂线性质即可判断;由三角形内角和定理可求PEA+PAE120,可得 可判断;过点A作AFBC,在BC上截取CGCP,由“SAS”可证PACEAC,延长至,使则点P关于AB的对称点P,连接PA,根据对称性质即可判断;过点A作AFBC,在BC上截取CGCP,由三角形的面积的和差关系可判断【详解】解:如图,连接BP,ACBC,ABC30,点D是AB的中点,CABA

17、BC30,ADBD,CDAB,ACDBCD60,CD是AB的中垂线,APBP,而APPE,APPBPEPABPBA,PEBPBE,PBA+PBEPAB+PEB,ABCPAD+PEC30,故正确;PAPE,PAEPEA,ABCPAD+PEC30,PAE+PEA 而 PAE是等边三角形,故正确;如图,延长至,使则点P关于AB的对称点为P,连接PA, APAP,PADPAD,PAE是等边三角形,AEAP,AEAP,CADCAP+PAD30,2CAP+2PAD60,CAP+PAD+PAD60PAC, PACEAC,ACAC,PACEAC(SAS),CPCE,CECPCP+PD+DPCP+2PD,故错误

18、;过点A作AFBC,在BC上截取CGCP,CGCP,BCD60,CPG是等边三角形,CGPPCG60,ECPPGB120,且EPPB,PEBPBE,PCEPGB(AAS),CEGB,ACBCBG+CGEC+CP,ABC30,AFBE,AFABAD,SACBCBAF(EC+CP)AFECAF+CPADS四边形AECP,S四边形AECPSABC故正确所以其中正确的结论是故选:C【点睛】本题考查了全等三角形的判定,等边三角形的判定和性质,含的直角三角形的性质,垂直平分线的定义与性质,添加恰当辅助线是本题的关键二、填空题1、4【分析】根据SAS证明,由全等三角形的性质得,由,得,推出,都是等腰三角形,

19、故得,设,则,列出等量关系式解出,即可得出【详解】点G分别为AD与CF的中点,都是等腰三角形,设,则,解得:,故答案为:4【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键2、【分析】延长AG交BC于D,根据重心的概念得到ADBC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可【详解】解:延长AG交BC于D,G是三角形的重心,ADBC,BD=DC=BC=,由勾股定理得,AD=,GA=AD=,故答案为:【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的

20、2倍3、#【分析】分别求出时与时AB的长,故可求解【详解】如图,当时,连接ABOAB是等边三角形如图,当时,连接AB,过O点作OCABA=B=,AC=BCOC=cmAC=cmAB=2AC=cm,两点之间的距离扩大了()cm故答案为:【点睛】此题主要考查等腰三角形、等边三角形的判定与性质,解题的关键是熟知勾股定理、等腰三角形及含30的直角三角形的性质4、【分析】过点F作FMAD于点M,由题意易得,则有,然后可得,进而可得,最后问题可求解【详解】解:过点F作FMAD于点M,如图所示:DAEABC90,FMAC,C30,AFBC,D45,都是等腰直角三角形,;故答案为【点睛】本题主要考查等腰直角三角

21、形及含30度直角三角形的性质、勾股定理,熟练掌握等腰直角三角形及含30度直角三角形的性质、勾股定理是解题的关键5、或或【分析】分是顶角,是底角,是底角,是底角,是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得【详解】解:由题意,分以下三种情况:当是顶角,是底角时,则;当是底角,是底角时,则;当是底角,是顶角时,则;综上,的度数为或或,故答案为:或或【点睛】本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键三、解答题1、(1);(2)证明见详解;(3)为等边三角形,证明见详解【分析】(1)由题意及全等三角形的判定定理可得ACDBCE,再根据全等三角形的

22、性质及三角形内角和外角的性质即可得出结果;(2)过点C作,由全等三角形的判定和性质可得:ACMBCN,利用角平分线的判定即可证明;(3)根据全等三角形的判定和性质可得:APCBQC,根据图形及角之间的关系可得,即可证明结论【详解】解:(1)如图所示:设BC与AD相交于点F,即,在与中,ACDBCE,故答案为:;(2)如图所示:过点C作,ACDBCE,在ACM与BCN中,ACMBCN,CH平分;(3)为等边三角形,理由如下:ACDBCE,P、Q为AD、BE中点,在与BQC中,APCBQC,为等边三角形【点睛】题目主要考查全等三角形的判定和性质,角平分线的判定和性质,三角形内角和定理等,理解题意,

23、熟练掌握,综合运用这些知识点是解题关键2、(1)15,40;(2)yx,见解析【分析】(1)设EDCm,则BCn,根据ADEAEDm+n,ADCB+BAD即可列出方程,从而求解(2)设BADx,EDCy,根据等腰三角形的性质可得BC,ADEAEDC+EDCB+y,由ADCB+BADADE+EDC即可得B+xB+y+y,从而求解【详解】解:(1)设EDCm,BCn,AEDEDC+Cm+n,又ADAE,ADEAEDm+n,则ADCADE+EDC2m+n,又ADCB+BAD,BAD2m,2m+nn+30,解得m15,EDC的度数是15;若EDC20,则BAD2m22040故答案是:15;40;(2)

24、y与x之间的关系式为yx,证明:设BADx,EDCy,ABAC,ADAE,BC,ADEAED,AEDC+EDCB+y,ADCB+BADADE+EDC,B+xB+y+y,2yx,yx【点睛】本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键3、(1)见解析;(2)6cm;存在,图见解析,14cm【分析】(1)根据,可得,从而证得ACPBCP,即可求证;(2)根据线段垂直平分线的性质定理,可得MB=MA,再由MBC的周长是14cm,可得AC+BC=14cm,即可求解;根据线段垂直平分线的性质定理,可得PB=PA,从而得到PB+CP=P

25、A+PCAC,进而得到当点P与点M重合时,的值最小,即可求解【详解】(1)证明:,在ACP与BCP中,ACPBCP,PA=PB;(2)MN垂直平分ABMB=MA,又MBC的周长是14cm,AC+BC=14cm, AC=AB=8cm,BC=6cm如图,当点P与点M重合时,的值最小,MN垂直平分ABPB=PA,PB+CP=PA+PCAC,当点P与点M重合时,的值最小,为AC的长PBC的周长最小值是8+6=14cm【点睛】本题主要考查了线段垂直平分线的性质定理,全等三角形的判定和性质,熟练掌握线段垂直平分线上的点到线段两端距离相等是解题的关键4、(1)(3,3);(2)直线OC的函数表达式为;点P坐

26、标为(,0)或(,0);t的值为,或【分析】(1)过A作ADx轴于点D,根据等腰直角三角形的性质得出OD=OA=3,即可得到A坐标为(3,3),;(2)由,且,可得OC=,在中,利用勾股定理求得BC的值,即可得到点C坐标,设出直线OC的函数表达式为y=kx,把(6,2)代入 求出k的值,即可得到直线OC的函数表达式;先求出直线AB的解析式,由题意点得P(t,0),Q(t,t)或(t,),R(t,),列出方程,即可求得点P坐标;先求出点H的坐标为(,),再根据面积法求出,最后分两种情况讨论即可.【详解】(1)过A作ADx轴于点D,OB=6,OA=AB,OAB=90,AD平分OAB,且OD=BD=

27、3,OAD=AOD=45,OD=DA=3,A坐标为(3,3),故答案为:(3,3);(2),且,OC=,当时,点P坐标为(6,0),直线l恰好过点C,点C坐标为(6,2),设直线OC的函数表达式为y=kx,把(6,2)代入,得:6k=2,解得,故直线OC的函数表达式为;设直线OC与直线AB交于点H,直线AB的解析式为,直线AB的解析式为,点P的横坐标为t,点R在直线上,点P(t,0),Q(t,t)或(t,),R(t,),线段QR的长度为m,或当时,或 解得:或或 故点P坐标为(,0)或(,0)或(,0);直线AB的解析式为,联立,解得,点H的坐标为(,),过点A作AM直线l,AN直线OC,如图

28、:或则:AM=,直线RQ与直线OC所组成的角被射线RA平分,AM=AN,即=,解得或,故t的值为或【点睛】此题考查等腰直角三角形的性质、求一次函数函数解析式、角平分线的性质、点到直线的距离、勾股定理的应用.作出相应的图形,分类讨论是解答此题的关键.5、(1)见解析;(2)【分析】(1)利用条件可求得E60且利用直角三角形的性质可得出MEAM,可判定AEM的形状;(2)由条件利用勾股定理可求得AB和BD的长,可求出ABC的面积【详解】解:(1)ABC是等边三角形,BD是AC边上的高线,AEAB,ABD30,E60,点M是BE的中点,在RtABE中,AMBEEM,AEM是等边三角形;(2)AE1,EAB90,ABD30BE2AE2,由勾股定理得:AB, ABACBC,ADAB,BD,SABC【点睛】本题主要考查等边三角形的判定和性质、勾股定理以及直角三角形中,30所对的边是斜边的一半,掌握等边三角形的性质和判定是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁