《2021-2022学年浙教版初中数学七年级下册第四章因式分解综合测评试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解综合测评试卷(含答案解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)22、下列从左边到右边的变形,属于因式分解的是( )A.B.C.D.3、若,则的值为( )A.2B.
2、3C.4D.64、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+15、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.76、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.7、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+230126018、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4
3、B.C.(x+2)(x2)x24D.x22x+1(x1)29、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)210、下列多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.11、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x2412、若多项式能因式分解为,则k的值是( )A.12B.12C.D.613、将边长为m的三个正方形纸片按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是
4、两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35.则图2中长方形的周长是()A.24B.26C.28D.3014、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)215、下列各式中,正确的因式分解是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、若xz2,zy1,则x22xyy2_2、分解因式:xy3x+y3_3、由多项式乘法:(x+a)(x+b)x2+(a+b)x+ab,将该式子从右
5、到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab(x+a)(x+b),请用上述方法将多项式x25x+6因式分解的结果是 _4、多项式各项的公因式是_5、若,且,则_6、因式分解:_7、已知a2b5,则代数式a24ab4b25的值是_8、因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),王勇看错了b的值,分解的结果是(x+2)(x3),那么x2+ax+b因式分解正确的结果是_9、下列多项式:;,它们的公因式是_10、已知,则_三、解答题(3小题,每小题5分,共计15分)1、分解因式(1);(2)2、因式分解(1)(2)3、因式分解(1)m2n
6、9n;(2)x22x8-参考答案-一、单选题1、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做
7、把这个多项式因式分解,然后进行正确的因式分解.2、C【分析】根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.3、C【分析】把变形为,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【详解】解:a+b=2,a2-b2+4b=(a-b)(a+b)+4b,=2(a-b)+4b,=2a-2b+4b,=
8、2(a+b),=22,=4.故选:C.【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.4、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.5、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1),a是整数,a(a+1)一定是两个连续的整数相乘,a
9、(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.6、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项A正确; B. 是多项式乘法,故选项B不正确;C. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.7、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取
10、公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.8、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解
11、此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、原式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2b2两平
12、方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).11、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.12、A【分析】根据完全
13、平方公式先确定a,再确定k即可.【详解】解:解:因为多项式能因式分解为,所以a=6.当a=6时,k=12;当a=-6时,k =-12.故选:A.【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k=-12.13、A【分析】由题意:按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35,列出方程组,求出3m=7,n=5,即可解决问题.【详解】依题意,由图1可得,由图2可得,即解得或者(舍)时,则图2中长方形的周长是.故选A.【点睛】本
14、题考查了利用因式分解解方程,找准等量关系,列出方程是解题的关键.14、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;
15、.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.二、填空题1、9【分析】先根据xz2,zy1可得xy3,再根据完全平方公式因式分解即可求解.【详解】解:xz2,zy1,xzzy21,即:xy3,x22xyy2(xy)29,故答案为:9.【点睛】本题考查了完全平方公式进行因式分解以及整式加减,熟练掌握完全平方公式是解决本题的关键.2、(y3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(
16、x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.3、【分析】根据“十字相乘法”的方法进行因式分解即可.【详解】故答案为:.【点睛】本题考查了十字相乘法因式分解,理解题目中的方法是解题的关键.4、4xy【分析】根据公因式的定义,找出系数的最大公约数,相同字母的最低指数次幂,然后即可确定公因式.【详解】解:多项式系数的最大公约数是4,相同字母的最低指数次幂是x和y,该多项式的公因式为4xy,故答案为:4xy.【点睛】本题考查多项式的公因式,掌握多项式每项公因式的求法是解题的关键.5、5【分析】将m2-n2按平方差公式展开,再将m-n的
17、值整体代入,即可求出m+n的值.【详解】解:,.故答案为:5.【点睛】本题主要考查平方差公式,解题的关键是熟知平方差公式的逆用.6、【分析】将当作整体,对式子先进行配方,然后利用平方差公式求解即可.【详解】解:原式.故答案是:.【点睛】此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.7、20【分析】将a=2b-5变为a-2b=-5,再根据完全平方公式分解a2-4ab+4b2-5=(a-2b)2-5,代入求解.【详解】解:a=2b-5,a-2b=-5,a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=20.故答案为:20.【点睛】
18、此题考查的是代数式求值,掌握完全平方公式是解此题的关键.8、(x4)(x+3)【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字相乘法分解因式即可.【详解】解:因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),b6(2)12,又王勇看错了b的值,分解的结果为(x+2)(x3),a3+21,原二次三项式为x2x12,因此,x2x12(x4)(x+3),故答案为:(x4)(x+3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法.9、【分析】将各多项式分解因式,即可得到它们的公因式.【详解】解:, ,它们的公因式是,故答案为:.【点
19、睛】此题考查多项式的因式分解方法,公因式的定义,熟练掌握多项式的因式分解方法是解题的关键.10、【分析】先将进行因式分解,然后根据已知条件,即可求解.【详解】解:,.故答案为:.【点睛】本题主要考查了平方差公式的应用,熟练掌握是解题的关键.三、解答题1、(1)a(a-4);(2)(x+y)2【分析】(1)提取公因式a,即可得出答案;(2)原式可化为x2-2xy+y2+4xy,再合并同类项,再根据完全平分公式进行因式分解即可得出答案.【详解】解:(1)原式=a(a-4);(2)原式=x2-2xy+y2+4xy=x2+2xy+y2=(x+y)2.【点睛】本题主要考查了提公因式及公式法因式分解,熟练
20、应用提取公因式及公式法进行因式分解是解决本题的关键.2、(1)(3y+2x)(3y-2x);(2)(x+3)2【分析】(1)使用平方差公式进式分解即可;(2)使用完全平方公式分解因式即可.【详解】解:(1)原式=(3y)2-(2x)2=(3y+2x)(3y-2x);(2)原式=x2+2x3+32=(x+3)2.【点睛】本题考查了公式法分解因式,熟记a2-b2=(a+b)(a-b),a22ab+b2=(ab)2是解题的关键.3、(1)n(m+3)(m-3);(2)(x-4)(x+2)【分析】(1)先提公因式n,再利用平方差公式进行因式分解即可;(2)利用十字相乘法进行因式分解即可.【详解】解:(1)m2n-9n=n(m2-9)=n(m+3)(m-3);(2)x2-2x-8=(x-4)(x+2).【点睛】本题考查提公因式法、公式法、十字相乘法分解因式,掌握平方差公式的结构特征以及十字相乘法适用二次三项式的特点是正确应用的前提.