精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专题测评试卷(含答案解析).docx

上传人:可****阿 文档编号:30772607 上传时间:2022-08-06 格式:DOCX 页数:20 大小:257.46KB
返回 下载 相关 举报
精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专题测评试卷(含答案解析).docx_第1页
第1页 / 共20页
精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专题测评试卷(含答案解析).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专题测评试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专题测评试卷(含答案解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解专题测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b22、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.3、下列各式中从左到右的变形,是因式分解的是( )A.B.C.D.4、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)5、

2、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.2B.2C.12D.126、下列各式中不能用平方差公式分解的是( )A.B.C.D.7、下列因式分解正确的是()A.x29(x3)(x3)B.x2x6(x2)(x3)C.3x6y33(x2y)D.x22x1(x1)28、下列分解因式正确的是()A.B.C.D.9、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.10、的值为( )A.B.C.D.35311、已知,那么的值为( )A.3B.6C.D.12、下列各式中,正确

3、的因式分解是( )A.B.C.D.13、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主14、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)215、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A.若a100,则bc0B.若a100,则bc1C.若bc,则a+bcD.若a100,则abc二、填

4、空题(10小题,每小题4分,共计40分)1、多项式的公因式是_2、若ab=2,a-b=3,则代数式ab2-a2b=_3、下列多项式:;,它们的公因式是_4、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_5、分解因式:_6、因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),王勇看错了b的值,分解的结果是(x+2)(x3),那么x2+ax+b因式分解正确的结果是_7、如果,那么的值为_8、若代数式x2a在有理数范围内可以因式分解,则整数a的值可以为_(写出一个即可)9、若,则的值是_10、请从,16,四个式子中,任选两个式子做差得到一个多项式,然后对其

5、进行因式分解是_三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)2m24mn+2n2;(2)x412、(1)计算:(2)因式分解:3、若,求的值解:,解得,故根据你的观察,解决下面的问题:(1)若,求的值;(2)试说明无论,取任何有理数,多项式的值总是正数-参考答案-一、单选题1、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.2、B【分析】

6、把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、,分解错误,故此选项不符合题意;故选:B.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.3、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是

7、整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.4、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2

8、5a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.6、C【分析】分别利用平方差公式分解因式进而得出答案.【详解】解:A、(2+x)(2x),可以用平方差公式分

9、解因式,故此选项错误;B、(y+x)(yx),可以用平方差公式分解因式,故此选项错误;C、,不可以用平方差公式分解因式,故此选项正确;D、(1+2x)(12x),可以用平方差公式分解因式,故此选项错误;故选:C.【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.7、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x29不能分解,所以A选项不符合题意;B、x2x6(x2)(x3),所以B选项符合题意;C、3x6y33(x2y1),所以C选项不符合题意;D、x22x1在有理数范围内不能分解,所以D选项不符合题意.故选:B

10、.【点睛】本题考查了因式分解十字相乘法等:对于x2(pq)xpq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2(pq)xpq(xp)(xq).8、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公

11、因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.9、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.10、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.11、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核

12、知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.12、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.13、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)

13、=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.14、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15、A【分析

14、】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.二、填空题1、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.2、6【分析】用提公因式法将ab2-a2b分解为含有ab,a-b的形式,代入即可.【详解】解:ab=2,a-b=3,ab2-a2b=-ab(a-b)=23=6,故答案为:6.【点睛】本题考查了用提

15、公因式法因式分解,解题的关键是将ab2-a2b分解为含有ab,a-b的形式,用整体代入即可.3、【分析】将各多项式分解因式,即可得到它们的公因式.【详解】解:, ,它们的公因式是,故答案为:.【点睛】此题考查多项式的因式分解方法,公因式的定义,熟练掌握多项式的因式分解方法是解题的关键.4、12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:9x2+kxy+4y2(3x)2+kxy +(2y)2,kxy23x2y12xy,解得k12.故答案为:12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式

16、对解题非常重要.5、【分析】先提取公因式,再根据平方差公式因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法和平方差公式,掌握是解题的关键.6、(x4)(x+3)【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字相乘法分解因式即可.【详解】解:因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),b6(2)12,又王勇看错了b的值,分解的结果为(x+2)(x3),a3+21,原二次三项式为x2x12,因此,x2x12(x4)(x+3),故答案为:(x4)(x+3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法

17、.7、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:=293=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.8、1【分析】直接利用平方差公式分解因式得出答案.【详解】解:当a1时,x2ax21(x+1)(x1),故a的值可以为1(答案不唯一).故答案为:1(答案不唯一).【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.9、16【分析】将代数式因式分解,再将已知式子的值代入计算即可.【详解】解:,=16故答案为:16.【点睛】此题考查代数式求值,因式分解的应用,注意整体代入思想是解答此题的关键.10、4

18、a2-16=4(a-2)(a+2)【分析】任选两式作差,例如,4a2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a2-16,=(2a)2-42,=(2a-4)(2a+4),=4(a-2)(a+2)故4a2-16=4(a-2)(a+2),故答案为:4a2-16=4(a-2)(a+2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题.三、解答题1、(1)2(mn)2;(2)(x2+1)(x+1)(x1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2

19、m24mn+2n22(m22mn+n2)2(mn)2;(2)x41(x2+1)(x21)(x2+1)(x+1)(x1).【点睛】本题考查了综合提取公因式法和公式法、公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟记各方法是解题关键.2、(1);(2)【分析】(1)把多项式的每一项分别除以单项式 从而可得答案;(2)先提取公因式 再按照完全平方公式分解因式即可得到答案.【详解】解:(1)原式= (2)原式=【点睛】本题考查的是多项式除以单项式,综合提公因式与公式法分解因式,掌握整式的除法运算,分解因式的方法与步骤是解题的关键.3、(1);(2)见解析【分析】(1)按照题目提供的方法将配方后求出的值即可求解.(2)将其整理为完全平方数加正数的形式即可证得结论.【详解】解:(1),;(2),无论,取任何有理数,多项式的值总是正数.【点睛】本题考查了配方法的应用,特别是判断一个算式是正数时总是将其整理成一个完全平方加正数的形式.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁