《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解综合测评.docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解综合测评.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.2、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或13、下列四个式子从左到右的变形是因式分解的为()A.(xy)(xy)y2x2B.a2+2ab+b21(a+b)21C.x481y4(x2+9y2)(x+3y)(x3y)D.(a2
2、+2a)28(a2+2a)+12(a2+2a)(a2+2a8)+124、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.5、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则mn的值是( )A.13B.11C.9D.76、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.7、下列因式分解正确的是()A.x29(x3)(x3)B.x2x6(x2)(x3)C.3x6y33(x2y)D.x22x1(x1)28、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012
3、300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+230126019、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)210、下列因式分解正确的是()A.2p+2q+12(p+q)+1B.m24m+4(m2)2C.3p23q2(3p+3q)(pq)D.m41(m+1)(m1)11、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mb
4、B.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)12、下列各式由左边到右边的变形,是因式分解的是( )A.B.C.D.13、已知,则代数式的值为( )A.B.1C.D.214、若,则的值为( )A.B.C.D.15、多项式的各项的公因式是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、分解因式:_;2、分解因式:_3、若实数a、b满足:a+b6,ab10,则2a22b2_4、若关于的二次三项式可以用完全平方公式进行因式分解,则_5、因式分解:_6、若,则_7、分解因式_8、分解因式:_;_9、因式分解:_10、因式分解x2+ax+b
5、时,李明看错了a的值,分解的结果是(x+6)(x2),王勇看错了b的值,分解的结果是(x+2)(x3),那么x2+ax+b因式分解正确的结果是_三、解答题(3小题,每小题5分,共计15分)1、下面是多项式x3+y3因式分解的部分过程,解:原式x3+x2yx2y+y3(第一步)(x3+x2y)(x2yy3)(第二步)x2(x+y)y(x2y2)(第三步)x2(x+y)y(x+y)(xy)(第四步) 阅读以上解题过程,解答下列问题:(1)在上述的因式分解过程中,用到因式分解的方法有 (至少写出两种方法)(2)在横线继续完成对本题的因式分解(3)请你尝试用以上方法对多项式8x31进行因式分解2、因式
6、分解:3、已知实数,满足,求的值-参考答案-一、单选题1、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:
7、,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.3、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.
8、【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.4、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项A正确; B. 是多项式乘法,故选项B不正确;C. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.5、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入mn计算即可.【详解】解:(x+3)(x4)=
9、x2-4x+3x-12=x2-x-12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.6、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌
10、握完全平方公式是解题的关键.7、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x29不能分解,所以A选项不符合题意;B、x2x6(x2)(x3),所以B选项符合题意;C、3x6y33(x2y1),所以C选项不符合题意;D、x22x1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解十字相乘法等:对于x2(pq)xpq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2(pq)xpq(xp)(xq).8、A【分析】直接
11、利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.9、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考
12、查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A、2p+2q+1不能进行因式分解,不符合题意;B、m2-4m+4=(m-2)2,符合题意;C、3p2-3q2=3(p2-q2)=3(p+q)(p-q),不符合题意;D、m4-1=(m2+1)(m2-1)=m4-1=(m2+1)(m+1)(m-1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的
13、变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.12、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多
14、项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.13、D【分析】由已知等式可得,将变形,再代入逐步计算.【详解】解:,=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.14、C【分析】根据十字相乘法可直接进行求解a、b的值,然后问题可求解.【详解】解:,;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.15、A【分析】公因式的定义:一个多项式中每一项都含有的相同的因式,叫做这个多
15、项式各项的公因式.由公因式的定义求解.【详解】解:这三个单项式的数字最大公因数是1,三项含有字母是a,b,其中a的最低次幂是a2,b的最低次幂是b,所以多项式的公因式是.故选A.【点睛】本题主要考查了公因式,关键是掌握确定多项式中各项的公因式,可概括为三“定”:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.二、填空题1、【分析】直接提取公因式即可得解.【详解】解:=.故答案为:.【点睛】此题主要考查了因式分解,熟练运用提公因式,找出公因式是解答此题的关键.2、【分析】根据平方差公式 进行
16、因式分解,即可.【详解】解:,故答案为:【点睛】本题主要考查了因式分解的方法,解题的关键是根据多项式的特点选合适的方法进行因式分解.3、120【分析】将所求式子变形,然后根据a+b6,ab10,即可求出所求式子的值.【详解】解:2a22b22(a2b2)2(a+b)(ab),a+b6,ab10,原式2610120,故答案为:120.【点睛】本题考查因式分解的应用、平方差公式,解答本题的关键是明确题意,求出所求式子的值.4、-3或5【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:x2-2(m-1)x+16能用完全平方公式进行因式分解,-2(m-1)=8,解得:m=-3或5.故答案为
17、:-3或5.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.5、【分析】先将原式变形为,再利用提公因式法分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.6、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.7、【分析】原式提取2,再利用平方差公式分解即可.【详解】解:=2(x2-9)=2(x+3)(x-3).故答案为:2(x+3)(x-3
18、).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、 【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:;故答案为:;.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9、a(a+1)(a-1)【分析】先找出公因式,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:故答案为:.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.10、(x4)(x+3)【分析】根据甲
19、、乙看错的情况下得出a、b的值,进而再利用十字相乘法分解因式即可.【详解】解:因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),b6(2)12,又王勇看错了b的值,分解的结果为(x+2)(x3),a3+21,原二次三项式为x2x12,因此,x2x12(x4)(x+3),故答案为:(x4)(x+3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法.三、解答题1、(1)提公因式法,公式法,分组分解法;(2);(3)【分析】(1)根据题意可得因式分解的方法为提公因式法,公式法,分组分解法;(2)根据第四步的结果提公因式法因式分解即可;(3)根据
20、题中的多项式x3+y3因式分解方法求解即可.【详解】(1)因式分解的方法为提公因式法,公式法,分组分解法;故答案为:提公因式法,公式法(2)原式x2(x+y)y(x+y)(xy)(第四步)故答案为:(3)【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.2、【分析】根据平方差公式“”进行解答即可得.【详解】解:原式=【点睛】本题考查了因式分解,解题的关键是掌握平方差公式.3、【分析】先把化为 再代入可得,利用非负数的性质求解 从而可得的值,再代入代数式求值即可.【详解】解:,代入得:, 可得:,所以.【点睛】本题考查的是非负数的性质,二元方程组的代换思想,求解代数式的值,运用完全平方公式分解因式,掌握“把原条件转化为非负数的和”是解题的关键.