2021-2022学年京改版八年级数学下册第十六章一元二次方程达标测试练习题(无超纲).docx

上传人:可****阿 文档编号:30705323 上传时间:2022-08-06 格式:DOCX 页数:16 大小:194.40KB
返回 下载 相关 举报
2021-2022学年京改版八年级数学下册第十六章一元二次方程达标测试练习题(无超纲).docx_第1页
第1页 / 共16页
2021-2022学年京改版八年级数学下册第十六章一元二次方程达标测试练习题(无超纲).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2021-2022学年京改版八年级数学下册第十六章一元二次方程达标测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十六章一元二次方程达标测试练习题(无超纲).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十六章一元二次方程达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一元二次方程的解是( )ABC,D2、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.

2、若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A128(1 - x2)= 88B88(1 + x)2 = 128C128(1 - 2x)= 88D128(1 - x)2 = 883、已知一元二次方程x2k30有一个根为1,则k的值为( )A2B2C4D44、若一元二次方程x25x+k =0的一根为2,则另一个根为( )A3B4C5D65、若m是方程2x23x10的一个根,则6m2+9m13的值为()A16B13C10D86、下列方程中一定是一元二次方程的是( )Ax240Bax2bxc0Cx2y10Dx107、下列一元二次方程中有两个相等实数根的是()Ax280Bx24x+

3、40C2x2+30Dx22x108、用配方法解方程x2+2x=1,变形后的结果正确的是( )A(x+1)2=-1B(x+1)2=0C(x+1)2=1D(x+1)2=29、把长为2 m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积设较长一段的长为x m,依题意,可列方程为( )ABCD10、若关于x的一元二次方程有一个根是,则a的值为( )AB0C1D或1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、随着网络购物的兴起,增加了快递公司的业务量,一家今年刚成立的小型快递公司业务量逐月攀升,今年9月份和11月份完成投送的快递件数分别是20万件和24.2万件

4、,若该公司每月投送的快递件数的平均增长是x,由题意列出关于x的方程:_2、凌源市“百合节”观赏人数逐年增加,据有关部门统计,2018年约为5万人次,2020年约为6.8万人次,设观赏人数年均增长率为x,则可列方程_3、某班学生去参加义务劳动,其中一组到一果园去摘梨子, 第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为 _4、关于x的方程的一个根是,则m_5、一元二次方程3x232x的根的判别式的值为 _三、解答题(5小题,每小题10分,共计50分)1、用适当的方法解下列方

5、程:(1)(x1)29;(2)x2+4x10(3)3(x5)24(5x)(4)x24x+1002、已知关于x的方程(m1)x2+2mx+m+30有两个实数根,请求出m的最大整数值3、已知关于x的方程x2 - 5x + m = 0(1)若方程有一根为 - 1,求m的值;(2)若方程无实数根,求m的取值范围4、用合适的方法解下列方程:(1)x24x50;(2)2x26x30;(3)(2x3)25(2x3);(4)5、解下列方程:(1); (2)-参考答案-一、单选题1、C【分析】根据因式分解法解一元二次方程即可【详解】解:即或解得,故选C【点睛】本题考查了因式分解法解一元二次方程,掌握解一元二次方

6、程的方法是解题的关键2、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解【详解】解:依题意得:128(1-x)2=88故选:D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键3、B【分析】根据根的含义将代入一元二次方程x2k30求解即可【详解】解:一元二次方程x2k30有一个根为1,将代入得,解得:故选:B【点睛】此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念4、A【分析】设方程的另一根为t,根据根与系数的关系得到2t5,求出t即可【详解】解:设方程的另一根为t,根据题意得2

7、t5,解得t3故选A【点睛】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,则x1x2,x1x25、则此三角形的周长是1故选:C【点睛】本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键5A【分析】将m代入2x23x10可得2m23m10,再化简所求代数为6m2+9m13-3(2m23m)13,即可求解【详解】解:m是方程2x23x10的一个根,2m23m10,2m23m1,6m2+9m133(2m23m)13311316,故选:A【点睛】本题考查一元二次方程的解,熟练掌握一元

8、二次方程的解与一元二次方程的关系,灵活变形所求代数式是解题的关键6、A【分析】利用一元二次方程定义进行解答即可【详解】解:A、是一元二次方程,故此选项符合题意;B、当a=0时,不是一元二次方程,故此选项不合题意;C、含有两个未知数,不是一元二次方程,故此选项不合题意;D、未知数次数为1,不是一元二次方程,故此选项不合题意;故选:A【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”7、B【分析】由根的判别式为b24ac,挨个计算四个选项中的值,由此即可得出

9、结论【详解】解:A、b24ac0241(8)320,该方程有两个不相等的实数根;B、b24ac(4)241(4)0,该方程有两个相等的实数根;C、b24ac02423240,该方程没有实数根;D、b24ac(2)241(1)80,该方程有两个不相等的实数根故选:B【点睛】本题考查了一元二次方程根的判别式,解题的关键是根据根的判别式的正负判定实数根的个数8、D【分析】方程两边同时加上一次项系数一半的平方即可得到答案【详解】解:x2+2x=1,x2+2x+1=1+1,(x+1)2=2,故选D【点睛】本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化

10、为1;(3)等式两边同时加上一次项系数一半的平方9、A【分析】由题意依据较长一段的长的平方等于较短一段的长与原绳长的积建立方程即可得出答案.【详解】解:设较长一段的长为x m,则较短一段的长为(2-x )m,由题意得:.故选:A.【点睛】本题考查一元二次方程的实际运用,根据题意找出题目蕴含的数量关系是解决问题的关键10、A【分析】把代入方程得出,再求出方程的解即可【详解】关于x的一元二次方程有一个根是解得一元二次方程故选:A【点睛】此题主要考查了一元二次方程的解,注意二次项系数不能为零二、填空题1、【分析】根据题意,该公司每月投送的快递件数的平均增长是x,则10月份完成投送的快递件数为万件,则

11、11月份完成投送的快递件数为万件,根据11月份完成投送的快递件数为24.2万件,列出一元二次方程即可【详解】解:设该公司每月投送的快递件数的平均增长是x,根据题意得故答案为:【点睛】本题考查了一元二次方程的应用,根据等量关系列出一元二次方程是解题的关键2、5(1+x)=6.8【分析】根据2015年及2017年的观赏人数,即可得出关于x的一元二次方程,此题得解【详解】解:由题意得:5(1+x)=6.8故答案为:5(1+x)=6.8【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键3、11【分析】设这组学生的人数为 人,根据题意列出方程,解出即可【详解】

12、解:设这组学生的人数为 人,根据题意得: ,即 解得: 故答案为:11【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键4、【分析】将代入方程即可求解【详解】解:关于x的方程的一个根是,解得故答案为:【点睛】本题考查了一元二次方程的解定义,掌握方程解的定义是解题的关键一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解5、40【分析】先把一元二次方程化为一般式,然后利用一元二次方程根的判别式直接计算即可解答【详解】解:,故答案为:40【点睛】本题考查一元二次方程根的判别式,熟练掌握该知识点是解题关键三、解答题1、(1)x14,

13、x22(2)(3)(4)【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可(3)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可(4)先判断是否有解,若有解,可直接利用公式法求解即可(1)解:(x1)29,x13或x13,x14,x22(2)解:x2+4x10,x2+4x1,x2+4x+41+4,即(x+2)25,x+2或x+2,x12+,x22(3)解:3(x5)24(5x),3(x5)2+4(x5)0,(x5)(3x11)0,则x50或3x110,解得x15,x2(4)解:a1,b4,c10,(4)2411080,x2,【点睛】

14、本题考查了一元二次方程的解法,要根据不同的方程采取不同的方法,解题时要先判断方程是否有根2、m的最大整数值为0【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可【详解】解:关于x的方程(m1)x2+2mx+m+30有两个实数根,b24ac(2m)24(m1)(m+3)4m2(4m2+8m12)4m24m28m+128m+120,m10,解得:m且m1,则m的最大整数值为0【点睛】本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键3、(1)m的值为(2)【分析】(1)将代入原方程,即可求出m的值(2)令根的判别式,即可求出m的取值范围【详

15、解】(1)解:方程有一根为 - 1,是该方程的根,解得:,故m的值为(2)解:方程无实数根,解得:【点睛】本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键4、(1);(2);(3);(4)【分析】(1)方程利用因式分解法求出解即可;(2)方程利用公式法求出解即可;(3)方程变形后,利用因式分解法求出解即可;(4)方程利用公式法求出解即可【详解】解:(1)方程x24x50,分解因式得:(x-5)(x+1)=0,所以x-5=0或x+1=0,解得:x1=5,x2=-1;(2)方程2x26x30,a=2,b=-6,c=-3,=b

16、2-4ac=36+24=600,x=,;(3)方程移项得:(2x-3)2-5(2x-3)=0,分解因式得:(2x-3)(2x-3-5)=0,所以2x-3=0或2x-8=0,解得:;(4)a=1,b=,c=10,=b2-4ac=48-40=80,x=,【点睛】本题考查了解一元二次方程-因式分解法,以及公式法,熟练掌握各自的解法是解题的关键5、(1),;(2)【分析】(1)先求解 再利用求根公式解方程即可;(2)先移项,把方程的右边化为0,再把方程的左边分解因式,化为两个一次方程,再解一次方程即可.【详解】解:(1) 即 (2) 或 解得:【点睛】本题考查的是公式法,因式分解法解一元二次方程,掌握“一元二次方程的求根公式”是解本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁