《精品试题北师大版九年级数学下册第二章二次函数专项测评试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版九年级数学下册第二章二次函数专项测评试卷(无超纲带解析).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第二章二次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把函数的图象向右平移2个单位,再向下平移1个单位,得到的图象解析式为( )ABCD2、若抛物线平移得到,则必须(
2、 )A先向左平移4个单位,再向下平移1个单位B先向右平移4个单位,再向上平移1个单位C先向左平移1个单位,再向下平移4个单位D先向右平移1个单位,再向下平移4个单位3、将抛物线向左平移2个单位长度,再向上平移3个单位长度,所得抛物线的解析式为( )ABCD4、二次函数的图象与轴的交点的横坐标分别为-1和3,则的图象与轴的交点的横坐标分别为( )A-3和1B1和5C-3和5D3和55、由二次函数,可知( )A开口向上B对称轴为直线x1C最大值为1D顶点坐标为(1,1)6、下列关于二次函数的说法正确的是( )A当时,随着的增大而增大B当时,有最小值为2C该函数图象与轴有两个交点D该函数图象可由抛物
3、线向左平移6个单位,再向上平移2个单位得到7、抛物线y2(x+1)2不经过的象限是()A第一、二象限B第二、三象限C第三、四象限D第一、四象限8、下列选项中是二次函数的是( )ABCD9、已知二次函数,当时,总有,有如下几个结论:当时,;当时,c的最大值为0;当时,y可以取到的最大值为7上述结论中,所有正确结论的序号是( )ABCD10、如图,一段抛物线,记为,它与x轴交于点O,;将绕点旋转180得,交x轴于点;将绕点旋转180得,交x轴于点;,如此进行下去,直至得,若在第5段抛物线上,则m值为( )A2B1.5CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,
4、过点A(0,4)作平行于x轴的直线AC分别交抛物线与于B、C两点,那么线段BC的长是_2、某件商品的销售利润y(元)与商品销售单价x(元)之间满足,不考虑其他因素,销售一件该商品的最大利润为_元3、如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_4、若抛物线yx2axb与x轴两个交点间的距离为2,对称轴为直线x1,则抛物线的解析式为_5、从2,1,1,3,5五个数中随机选取一个数作为二次函数yax2+x3中a的值,则二次函数图象开口向上的概率是 _三、解答题(5小题,每小
5、题10分,共计50分)1、如图,在平面直角坐标系xOy中, 抛物线与轴交于点 和 点,与轴交于点, 顶点为(1)求该抛物线的表达式的顶点的坐标;(2)将抛物线沿轴上下平移, 平移后所得新拋物线顶点为, 点的对应点为如果点落在线段上, 求的度数;设直线与轴正半轴交于点, 与线段交于点, 当时, 求平移后新抛物线的表达式2、二次函数y=ax2+bx+c(a0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c0的解集;(3)求y的取值范围3、如图,已知抛物线的顶点为A(1,4),抛物线与轴交于点B(0,3),与x轴交于C、D两点,(1
6、)求此抛物线的解析式(2)若点P是对称轴上的一个动点,当PBC周长最小时,求点P的坐标(3)抛物线上是否存在点Q,使点Q到直线BD的距离为?若存在,请直接写出Q的坐标,若不存在,请说明理由4、在平面直角坐标系xOy中,点(1,m)和点(3,n)在二次函数yx2bx的图象上(1)当m-3时求这个二次函数的顶点坐标; 若点(-1,y1),(a,y2)在二次函数的图象上,且y2y1,则a的取值范围是_;(2)当mn0时,求b的取值范围5、如图,抛物线经过点和,与x轴的另一个交点为B,它的对称轴为直线(1)求该抛物线的表达式;(2)若点P是y轴右侧抛物线上的一个点,且与的面积相等,求点P的坐标;(3)
7、点Q是该抛物线上的点,过点Q作的垂线,垂足为是上的点要使以为顶点的三角形与全等,求满足条件的点Q-参考答案-一、单选题1、A【分析】根据函数图象平移变换关系进行求解即可【详解】把函数的图象向右平移2个单位、再向下平移1个单位后的解析式为故选:A【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减并用规律求函数解析式2、B【分析】根据两抛物线的顶点坐标即可确定平移的方向与距离,从而完成解答【详解】抛物线的顶点为(4,1),而抛物线的顶点为原点由题意,把抛物线的顶点先向右平移4个单位,再向上平移1个单位,即可得到抛物线的顶点,从而抛物线先向右平移4个单位,再向上平移
8、1个单位即可得到故选:B【点睛】本题考查了二次函数图象的平移,关键是抓住抛物线顶点的平移3、B【分析】直接根据平移规律作答即可【详解】解:将抛物线向左平移2个单位长度,再向上平移3个单位长度后所得抛物线解析式为,即;故选:B【点睛】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减并用规律求函数解析式4、A【分析】根据二次函数图象的平移规律可得交点的横坐标【详解】解:二次函数的图象与x轴的交点的横坐标分别为-1和3的图象与x轴的交点的横坐标分别为:-1-2-3和3-21故选:A【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用平移的性质和点的坐标平移的性质
9、解答5、B【分析】由二次项系数正负,判断开口方向,利用对称轴的公式,求出对称轴,将对称轴代入二次函数表达式,即可求出最值和顶点坐标【详解】解:A、由于,开口方向向下,故A错误B、对称轴为直线,故B正确C、将代入函数表达式中求得:,最大值为,故C错误D、根据对称轴及最值可知,顶点坐标为(1,1),故D错误故选:B【点睛】本题主要是考查了二次函数的基本性质,熟练掌握二次函数的基本性质,是求解该题的关键6、B【分析】根据二次函数的性质,增减性质可判断A,函数最值可判断B,函数图像的位置可判断C,利用平移的方向可判断D【详解】解:二次函数抛物线开口向上,当时,抛物线y随x增大而增大,故选项A不正确;当
10、时,有最小值为2,故选项B正确;函数图像都在x轴上方,与x轴没有交点,故选项C不正确;该函数图象可由抛物线向右平移6个单位,再向上平移2个单位得到,故选项D不正确故选B【点睛】本题考查二次函数的性质,掌握二次函数的性质,以及平移法则上加下减,左加右减是解题关键7、C【分析】根据顶点式写出顶点坐标,开口向上,进而即可求得的答案【详解】解: y2(x+1)2,开口向上,顶点坐标为该函数不经过第三、四象限如图,故选C【点睛】本题考查了图象的性质,根据解析式求得开口方向和顶点坐标是解题的关键8、C【分析】根据二次函数的定义逐项分析即可,二次函数的定义:一般地,形如(是常数,)的函数,叫做二次函数【详解
11、】解:A、yx+1,是一次函数,不是二次函数,故该选项不符合题意;B、,是反比例函数,不是二次函数,故该选项不符合题意;C、,是二次函数,故该选项符合题意;D、 ,是一次函数,不是二次函数,故该选项不符合题意;故选C【点睛】本题考查了二次函数的定义,理解二次函数的定义是解题的关键9、B【分析】当时,根据不等式的性质求解即可证明;当时,二次函数的对称轴为:,分三种情况讨论:当时;当时;当时;分别利用二次函数的的最值问题讨论证明即可得;当,时,分别求出相应的y的值,然后将时,y的值变形为:,将各个不等式代入即可得证【详解】解:当时, ,即,正确;当时,二次函数的对称轴为:,当时,即时,函数在处取得
12、最小值,即,函数在处取得最大值,即,二者矛盾,这种情况不存在;当时,即时,函数在处取得最小值,即,当时,即时,时,;时,不符合题意,舍去;当时,即时,时,;时,不符合题意,舍去;,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即,二者矛盾,这种情况不存在;综上可得:;故错误;当时,且;当时,且;当时,且;当时,当时,y可以取到的最大值为7;正确;故选:B【点睛】题目主要考查二次函数的基本性质及不等式的性质,熟练掌握不等式的性质是解题关键10、A【分析】求出抛物线C1与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线C5平移的距离,再根据向右平移横坐标减表示出抛
13、物线C5的解析式,然后把点P的坐标代入计算即可得解【详解】解:令y0,则x(x3)0,解得x10,x23,A1(3,0),由图可知,抛物线C5在x轴上方,相当于抛物线C1向右平移4312个单位得到,抛物线C5的解析式为y(x12)(x123)(x12)(x15),P(14,m)在第5段抛物线C5上,m(1412)(1415)2故选:A【点睛】本题考查了抛物线与x轴的交点,二次函数图象与几何变换,确定抛物线C5的关系式是解题的关键,平移的规律:左加右减,上加下减二、填空题1、2【分析】根据题意,将分别代入 ,求得的正数解,即求得的坐标,进而即可求得的长【详解】解:,则解得,即解得,即故答案为:【
14、点睛】本题考查了根据二次函数的函数值求自变量,联立解方程是解题的关键2、2【分析】知的最大值在时取得,值为【详解】解:根据函数图像性质可知在时,最大且取值为故答案为:【点睛】本题考查了二次函数实际应用中的最值问题解题的关键将二次函数化成顶点式3、【分析】连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P根据旋转作图和“心”形的对称性得到COB=30,BOG=60,设OM=m,得到点B坐标为,把点B代入,求出m,即可得到点A、B坐标,根据勾股定理即可求出AB【详解】解:如图,连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P点C绕原点O旋转60得到
15、点D,COD=60,由“心”形轴对称性得AB为对称轴,OB平分COD,COB=30,BOG=60,设OM=m,在RtOBM中,BM=,点B坐标为,点B在抛物线上,解得,点B坐标为,点A坐标为,AP=,BP=9,在RtABP中,故答案为:【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点B坐标是解题关键4、【分析】根据题意两个交点间的距离为2,对称轴为直线,可确定抛物线与x轴的两个交点,然后代入解析式求解即可得【详解】解:两个交点间的距离为2,对称轴为直线,抛物线与x轴两个交点的坐标为:,将两个点代入抛物线解析式可得:,解得:,解析式为:,故答
16、案为:【点睛】题目主要考查二次函数的基本性质,理解题意,得出抛物线与x轴的两个交点是解题关键5、【分析】二次函数图象开口向上得出a0,从所列5个数中找到a0的个数,再根据概率公式求解可得【详解】解:从2,1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,该二次函数图象开口向上的概率为,故答案为:【点睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数三、解答题1、(1),;(2);【分析】(1)把点 和 点代入抛物线的解析式。利用待定系数法求解抛物线的解析式即
17、可;(2)先求解 直线为: 设平移后的抛物线为: 由新抛物线的顶点在上, 可得新的抛物线为: 同理可得: 再利用勾股定理的逆定理证明 从而可得答案;如图,连接 同理可得: 由平移的性质可得: 则 可得 设平移后的抛物线为:同理: 且 再利用 列方程解方程求解 从而可得答案.【详解】解:(1)抛物线与轴交于点 和 点,解得: 所以抛物线的解析式为:, 抛物线的顶点 (2) ,令 则 设直线为: 解得: 所以直线为: 设平移后的抛物线为: 抛物线的顶点为: 在上, 所以新的抛物线为: 同理可得: 如图,连接 同理可得: 由平移的性质可得: 则 设平移后的抛物线为:同理: 且 解得: 所以平移后的抛
18、物线为:【点睛】本题考查的是利用待定系数法求解二次函数的解析式与一次函数的解析式,二次函数图象的平移,平移的性质的应用,勾股定理及勾股定理的逆定理的应用,数形结合及证明是解(2)问的关键.2、(1)5和1;(2)5x1;(3)y9【分析】(1)根据二次函数的图像与轴的交点,即可求解;(2)根据二次函数的图像,即可求解;(3)求得二次函数的解析式,根据二次函数的性质求得最大值,即可求解【详解】解:(1)如图所示:方程ax2+bx+c=0的两个根为:5和1;(2)如图所示:不等式ax2+bx+c0的解集为:;(3)抛物线与坐标轴分别交于点A(5,0),B(1,0),C(0,5),设抛物线解析式为:
19、,抛物线过点C(0,5),解得:,抛物线解析式为:,当时,y的取值范围为:【点睛】此题考查了二次函数的图像与性质,二次函数与一元二次方程、一元二次不等式之间的关系,解题的关键是掌握并灵活运用相关性质进行求解3、(1)y(x1)2+4;(2)P(1,2);(3)【分析】(1)设抛物线顶点式解析式ya(x1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)先求出抛物线对称轴为x=1,点C坐标为(-1,0),点D坐标为(3,0),根据BC为定值,得到当PB+PC的值最小时,PBC周长最小,连接BD,交抛物线对称轴于点P,此时,PB+PC值最小,即PBC周长最小求出直线BD解析式为y=-x+3
20、,把x=1代入y=-x+3即可求出点P坐标为(1,2);(3)过点Q作QHx轴,交BD于F,作QEBD于E,求出FQ=1,即可得到过点Q且平行与BD的直线解析式为或 ,分别于抛物线联立方程组,即可求出点Q的坐标【详解】解:(1)抛物线的顶点为A(1,4),设抛物线的解析式ya(x1)2+4,把点B(0,3)代入得,a+43,解得a1,抛物线的解析式为y(x1)2+4;(2)如图1,由抛物线抛物线的解析式为y(x1)2+4得对称轴为x=1,点C与点D关于对称轴对称,把y=0代入y(x1)2+4,得(x1)2+4=0,解得,点C坐标为(-1,0),点D坐标为(3,0),BC为定值,当PB+PC的值
21、最小时,PBC周长最小,连接BD,交抛物线对称轴于点P,此时,PB+PC值最小,即PBC周长最小设直线BD解析式为y=kx+b(k0),由题意得,解得,直线BD解析式为y=-x+3,把x=1代入y=-x+3得y=-1+3=2,点P坐标为(1,2);(3)如图2,过点Q作QHx轴,交BD于F,作QEBD于E,OB=OD=3,QHx轴,HDF=HFD=45,EFQ=DFH=45,QEBD,QEF为等腰直角三角形,QE=EF=,点Q到直线BD的距离为,点Q在与直线BD平行的直线上,即将直线BD向上或向下平移1个单位,可得到过点Q的直线,直线BD解析式为y=-x+3,过点Q且平行于BD的直线解析式为或
22、 ,解方程组得,;解方程组得,;满足条件的点Q的坐标有四个,即 【点睛】本题为二次函数综合题,考查了待定系数法求抛物线解析式,利用二次函数对称性解决将军饮马问题,勾股定理,函数与方程(组)关系等知识,综合性强,理解二次函数的性质和函数与方程组关系并根据题意灵活应用是解题关键4、(1);或;(2)【分析】(1)将点(1,-3)代入yx2bx求出b的值,得出函数关系式,再进行配方即可得到抛物线的顶点坐标;根据函数的图象,结合函数性质可得出a的取值;(2)用含有b的代数式分别表示出m,n,根据mn0分类讨论即可【详解】解:(1)当m-3时把点(1,-3)代入yx2bx,得b-4,二次函数表达式为yx
23、2 -4x(x-2)2 -4所以顶点坐标为(2,-4)根据题意得抛物线yx2 -4x开口向上,对称轴为直线x=2,y2y1,i)当点(-1,y1),(a,y2)在抛物线对称轴左侧时,有;ii)当点(-1,y1),(a,y2)在抛物线对称轴两侧时,根据对称性可知;所以a的取值范围是:a-1或a5故答案为:a-1或a5(2)将点(1,m),(3,n)代入yx2bx,可得m1b ,n93b当mn0时,有两种情况:若 把m1b ,n93b代入可得 此时不等式组无解若 把m1b ,n93b代入可得解得-3b-1 所以-3b-1【点睛】本题考查了运用待定系数法求二次函数解析式以及二次函数图象上点的特点,能
24、结合题意确定b的取值范围是解题的关键5、(1)(2)P(4,5)(3)(-2,5)或(4,5)【分析】(1)把、代入即可求解;(2)求出B,设P(x,y)(x0),根据与的面积相等,得到方程,故可求解;(3)先证明BOC是等腰直角三角形,过Q1作Q1Dl于D点,与抛物线的另一个交点为Q2,当Q1D=DE1=DE2=3时,Q1DE1Q1DE2BOC,求出Q1的横坐标为-2,根据对称性求出Q2即可求解【详解】解:(1)把、代入得解得抛物线的表达式为(2)令=0解得x1=-1,x2=3B设P(x,y)(x0)与的面积相等,即解得x=4P(4,5);(3)B(3,0),C(0,-3)BOC=90OB=OC=3,BOC是等腰直角三角形如图,过Q1作Q1Dl于D点,与抛物线的另一个交点为Q2Q1DE1=Q1DE2=BOC=90当Q1D=DE1=DE2=3时,Q1DE1Q1DE2BOC=函数对称轴为x=1Q1的横坐标为1-3=-2Q1(-2,5)同理,根据对称性可得Q2(4,5)符合题意满足条件的点Q为(-2,5)或(4,5)【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知待定系数法、二次函数的图像与性质及全等三角形的判定与性质