2022年强化训练北师大版九年级数学下册第三章-圆专项测评试题(含解析).docx

上传人:可****阿 文档编号:30692386 上传时间:2022-08-06 格式:DOCX 页数:28 大小:1.29MB
返回 下载 相关 举报
2022年强化训练北师大版九年级数学下册第三章-圆专项测评试题(含解析).docx_第1页
第1页 / 共28页
2022年强化训练北师大版九年级数学下册第三章-圆专项测评试题(含解析).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《2022年强化训练北师大版九年级数学下册第三章-圆专项测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第三章-圆专项测评试题(含解析).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住,此

2、时木板与桌面成30角,则点A运动到A2时的路径长为()A10B4CD2、如图,已知中,则圆周角的度数是( )A50B25C100D303、已知在圆的内接四边形ABCD中,A:C3:1,则C的度数是()A45B60C90D1354、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD25、已知O的半径为3,若PO=2,则点P与O的位置关系是( )A点P在O内B点P在O上C点P在O外D无法判断6、已知,在圆中圆心角度数为45,半径为10,则这个圆心角所对的扇形面积为( )ABCD7、在平面直角坐标系xOy中,已知点A(4,3),以点A为圆心,4为半径画A,则坐标原点O与A的位置

3、关系是()A点O在A内B点O在A外C点O在A上D以上都有可能8、如图,点A,B,C在O上,ACB37,则AOB的度数是( )A73B74C64D379、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为()A12+2B4+C24+2D12+1410、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为4,点E是CD边上一点,

4、连接AE,过点B作BGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_2、如图,正方形ABCD内接于O,点P在上,则BPC的度数为_3、一条弧所对的圆心角为,弧长等于,则这条弧的半径为_4、若扇形的圆心角为60,半径为2,则该扇形的弧长是_(结果保留)5、若弧长为的扇形的圆心角为直角,则该扇形的半径为_三、解答题(5小题,每小题10分,共计50分)1、新定义:在一个四边形中,若有一组对角都等于90,则称这个四边形为双直角四边形如图1,在四边形ABCD中,AC90,那么四边形ABCD就是双直角四边形(1)若四边形ABCD是双直角四边形,且AB3,BC4,CD2,求AD的长;(2)已知,

5、在图2中,四边形ABCD内接与O,BCCD且BAC45;求证:四边形ABCD是双直角四边形;若ABAC,AD1,求AB的长和四边形ABCD的面积2、如图,在半O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC的延长线于点D,交弦BC于点E(1)求证:DABC;(2)若OECE,求图中阴影部分的面积(结果保留根号和)3、如图1,BC是O的直径,点A,P在O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQAP,交PC 的延长线于点Q,AQ交O于点D,已知AB3,AC4(1)求证:APQABC(2)如图2,当点C为的中点时,求AP的长(3)连结AO,OD,

6、当PAC与AOD的一个内角相等时,求所有满足条件的AP的长4、如图,AB为的直径,点C在上,连接AC,BC,过点O作于点D,过点C作的切线交OD的延长线于点E(1)求证:;(2)连接AD若,求AD的长5、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中的位置如图所示(1)画出关于轴对称的;(2)画出将绕点顺时针方向旋转得到的;(3)在(2)的旋转变换中,求线段扫过的面积-参考答案-一、单选题1、C【分析】根据题意可得:第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 ,再由弧长公式,即可

7、求解【详解】解:如图,根据题意得: , ,第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 , ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 , ,点A运动到A2时的路径长为 故选:C【点睛】本题主要考查了求弧长,熟练掌握扇形的弧长公式是解题的关键2、B【分析】根据圆周角定理,即可求解【详解】解: , 故选:B【点睛】本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键3、A【分析】根据圆内接四边形的性质得出A+C180,再求出C即可【详解】解:四边形ABCD是圆的内接四边形,A+C180,A:C3:1,

8、C18045,故选:A【点睛】本题考查了元内接四边形对角互补的性质,熟练掌握性质是解题的关键4、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键5、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,当rd时,点P在O内,当r=d时,点P在O上,当rd时,点P在O外,根据以上内容判断即可【详解】O的半径为3,若PO2,23,点P

9、与O的位置关系是点P在O内,故选:A【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,当rd时,点P在O内,当r=d时,点P在O上,当rd时,点P在O外6、D【分析】利用扇形面积公式直接计算即可【详解】解:在圆中圆心角度数为45,半径为10,则这个圆心角所对的扇形面积为:,故选:D【点睛】本题考查了扇形面积计算,解题关键是熟记扇形面积公式,准确进行计算7、B【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当dr时,点在圆外;当d=r时,点在圆上;点在圆外;当dr时,点在圆内;来确定点与圆的位置关系【详解】解

10、:点A(4,3),A的半径为4,点O在A外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系8、B【分析】根据圆中同弧或等弧多对应的圆周角是圆心角的一半,可知AOB=2ACB=74,即可得出答案【详解】解:由图可知,AOB在O中为对应的圆周角,ACB在O中为对应的圆心角,故:AOB=2ACB=74故答案为:B【点睛】本题主要考查的是圆中的基本性质,同弧对应的圆周角与圆心角度数的关系,熟练掌握圆中的基本概念是解本题的关键9、A【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果【详解】解:正三

11、角形的面积为:,三个小半圆的面积为:,中间大圆的面积为:,所以阴影部分的面积为:,故选:【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键10、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得

12、r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键二、填空题1、1【分析】以AB为直径作圆,当CF与圆相切时,AF最大根据切线长定理转化线段AFBCCF,在RtDFC利用勾股定理求解【详解】解:以AB为直径作圆,因为AGB90,所以G点在圆上当CF与圆相切时,AF最大此时FAFG,BCCG设AFx,则DF4x,FC4x,在RtDFC中,利用勾股定理可得:42(4x)2(4x)2,解得x1故答案为:1【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键2、45度【分析】连接OB、OC,根据正方形的性

13、质得到BOC的度数,利用圆周角与圆心角的关系得到答案【详解】解:连接OB、OC,四边形ABCD是正方形,BOC=90,BPC=,故答案为:45【点睛】此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键3、9cm【分析】由弧长公式即可求得弧的半径【详解】故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键4、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算【详解】解:依题意,n=,r=2,扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用关键是熟悉公式:扇形的弧长=5、4【分析】利用扇形的弧长公式表示出扇形的弧长,

14、将已知的圆心角及弧长代入,即可求出扇形的半径【详解】解:扇形的圆心角为90,弧长为2,即,则扇形的半径r=4故答案为:4【点睛】本题考查了弧长的计算公式,扇形的弧长公式为(n为扇形的圆心角度数,r为扇形的半径),熟练掌握弧长公式是解本题的关键三、解答题1、(1);(2)见解析;【分析】(1)连接BD,运用勾股定理求出BD和AD即可;(2)连接OB,OC,OD,证明BD是的直径即可;过点D作于点E,设圆的半径为R,由勾股定理求出AB,AD,BC,CD的长,再根据运用三角形面积公式求解即可【详解】解:(1)连接BD,如图,在中,BC4,CD2,在中,AB3,BD2 ,(2)连接OB,OC,OD,如

15、图, 在和中 O是线段BD的中点,BD为的直径 四边形ABCD是双直角四边形;(3)过点D作于点E, 是等腰直角三角形在中, 设圆的半径为R,和均为等腰直角三角形,在中,在中,解得,【点睛】本题主要考查了勾股定理,圆周角定理,三角形面积计算等知识,灵活添加辅助线是解答本题的难点2、(1)见解析;(2)【分析】(1)根据等角的余角相等证明即可;(2)根据S阴SAODS扇形SAOC计算即可【详解】(1)证明:AB是直径,ACB90A+ABC90DOAB,A+D90DABC;(2)解:设B,则BCO,OECE,EOCBCO,在BCO中,+90+180,30A60, OAAB3,OCOA3,又OD3,

16、S阴SAODS扇形SAOC33【点睛】本题考查了直径所对的圆周角是直角,含30度角的直角三角形的性质,勾股定理,三角形全等的性质与判定,求扇形面积公式,根据S阴SAODS扇形SAOC求解是解题的关键3、(1)见解析;(2)(3)当,时,;当时,【分析】(1)通过证,即可得;(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP(3)分类讨论, ,三种情况讨论,再通过勾股定理和相似即可求解【详解】证明:(1)AQAPBC是O的直径(2)如图,连接CD,PDBC是O的直径AB3,AC4利用勾股定理得:,即直径为5DP是O的直径,且DP=BC=5点C为的中点CD

17、=PC是等腰直角三角形利用勾股定理得:,则,即:,即:(3)连接AO,OD,OP,CD,OD交AC于点M(已证)OD,OP共线,为O的直径情况一:当时,AP=PC即AP=PC在中,在中,情况二:当时,同情况一:情况三:当时,OA=OD综上所述,当,时,;当时,【点睛】本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系4、(1)证明见解析;(2)AD=4【分析】(1)连接OC通过垂径定理和等腰三角形性质证明E=B(2)连接AD通过计算发现BC=EC,再通过证明CEDABC得到AC=D

18、C=4【详解】(1)证明:连接OC如图:ODCBOB=OC,B=OCD又CE为圆O的切线OCCEECD+DCO=ECD+E=90E=DCO=BE=B(2)连接AD如图EDC为RtDE=8由(1)得E=B又AB为直径BCA=90在CED和ABC中CEDABC(AAS)AC=DC=4【点睛】本题考查垂径定理和全等三角形的判定与性质,掌握这些是本题解题关键5、(1)见解析;(2)见解析;(3)【分析】(1)根据题意画出即可;关于y轴对称点的坐标纵坐标不变,横坐标互为相反数;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90后的对应点,然后顺次连接即可;(3)利用ABC旋转时BC线段扫过的面积扇形BOB2扇形COC2即可求出【详解】解:(1)如图(2)如图(3)线段扫过的而积为【点睛】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁