2022年强化训练北师大版九年级数学下册第三章-圆专项攻克试题(精选).docx

上传人:知****量 文档编号:28155813 上传时间:2022-07-26 格式:DOCX 页数:37 大小:1.18MB
返回 下载 相关 举报
2022年强化训练北师大版九年级数学下册第三章-圆专项攻克试题(精选).docx_第1页
第1页 / 共37页
2022年强化训练北师大版九年级数学下册第三章-圆专项攻克试题(精选).docx_第2页
第2页 / 共37页
点击查看更多>>
资源描述

《2022年强化训练北师大版九年级数学下册第三章-圆专项攻克试题(精选).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第三章-圆专项攻克试题(精选).docx(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、直角三角形PAB一条边为AB,另一顶点P在直线l上,下面是三个学生做直角三角形的过程以及自认为正确的最终结论:甲:过

2、点A作l的垂线,垂足为P1;过点B作l的垂线,垂足为P2;作AP3BP3故符合题意的点P有三处;乙:以AB为直径作圆O,O与交l于两点P1、P2,故符合题意的点P有两处;丙:过点A作P1AAB,垂足为A,交l于点P1;过点B作P2BAB,垂足为B,交l于点P2故符合题意的点P有两处下列说法正确的是() A甲的作法和结论均正确B乙、丙的作法和结论合在一起才正确C甲、乙、丙的作法和结论合在一起才正确D丙的作法和结论均正确2、在数轴上,点A所表示的实数为3,点B所表示的实数为a,A的半径为2,下列说法错误的是()A当a5时,点B在A内B当1a5时,点B在A内C当a1时,点B在A外D当a5时,点B在A

3、外3、如图,AB是O的直径,弦CDAB于E,若OA2,B60,则CD的长为( )AB2C2D44、如图,是半圆的直径,四边形和都是正方形,其中点,在上,点,在半圆上若,则正方形的面积与正方形的面积之和是( )A25B50CD5、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1)B(1,0)C(1,1)D(0,1)6、下列图形中,ABC与DEF不一定相似的是( )ABCD7、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2008、如图

4、,菱形中,以为圆心,长为半径画,点为菱形内一点,连,若,且,则图中阴影部分的面积为( )ABCD9、如图,ABC内接于O,BD为O的直径,且BD2,则DC( )A1BCD10、如图,是的直径,、是上的两点,若,则( )A15B20C25D30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_2、往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm,则水面AB的宽度为_cm3、圆形角是270的扇形的半径为4cm,则

5、这个扇形的面积是_4、如图,将半径为4,圆心角为120的扇形OAB绕点A逆时针旋转60,点O,B的对应点分别为O,B,连接BB,则图中阴影部分的面积是_5、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点若,则图中影部分的面积和为 _(结果保留根号和三、解答题(5小题,每小题10分,共计50分)1、如图,内接于,弦AE与弦BC交于点D,连接BO,(1)求证:;(2)若,求的度数;(3)在(2)的条件下,过点O作于点H,延长HO交AB于点P,若,求半径的长2、如图,四边形ABCD内接O,CB(1)如图1,求证:ABCD;(2)如图2,连接BO并延长分别交O和CD

6、于点F、E,若CDEB,CDEB,求tanCBF;(3)如图3,在(2)的条件下,在BF上取点G,连接CG并延长交O于点I,交AB于H,EFBG13,EG2,求GH的长3、如图,在中,点在边上,过三点的交于点,作直径,连结并延长交于点,连结,此时(1)求证:;(2)当为的中点,且时,求的直径长4、如图,以点为圆心,长为直径作圆,在上取一点,延长至点,连接,过点作交的延长线于点(1)求证:是的切线;(2)若,求的长5、已知:为的直径,四边形为的内接四边形,分别连接、,交于点,且(1)如图1,求证:;(2)如图2,延长交的延长线于点,交于点,连接,求证:;(3)如图3,在(2)的条件下,交于点,若

7、,求的长-参考答案-一、单选题1、B【分析】根据三个学生的作法作出图形即可判断【详解】解:甲的作图如下,不是直角三角形,故甲的不正确乙:如图,根据直径所对的圆周角是直角可知,乙的作法正确,但不完整,丙的作法如下,丙的作法也正确,但不完整,乙、丙的作法和结论合在一起才正确故选B【点睛】本题考查了直角三角形的判定,直径所对的圆周角是直角,根据题意作出图形是解题的关键2、A【分析】根据数轴以及圆的半径可得当d=r时,A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可【详解】解:圆心A在数轴上的坐标为3,圆的半径为2,当d=r时,A与数轴交于两点:

8、1、5,故当a=1、5时点B在A上;当dr即当1a5时,点B在A内;当dr即当a1或a5时,点B在A外由以上结论可知选项B、C、D正确,选项A错误故选A【点睛】本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键3、B【分析】先证明是等边三角形,再证明求解从而可得答案.【详解】解: 是等边三角形, 故选B【点睛】本题考查的是等边三角形的判定与性质,垂径定理的应用,锐角三角函数的应用,证明是等边三角形是解本题的关键.4、A【分析】连接ON,OF,根据题意可得:ON=OF=5,设CN=x,EF=y,由勾股定理得:x2+(x+DO)2=25,y2+(y-DO)2=25,然后-化简得:(

9、xy)(xDO-y)=0,从而得到y-DO=x,再代入,即可求解【详解】解:如图,连接ON,OF,直径,ON=OF=5,设CN=x,EF=y, 由勾股定理得:x2+(x+DO)2=25,y2+(y-DO)2=25,-化简得:(xy)(xDO-y)=0,因为x+y0,所以x+DO-y=0,即y-DO=x,代入,得x2+y2=25,即正方形的面积与正方形的面积之和是25故选:A【点睛】本题主要考查了圆的基本性质,勾股定理等知识,熟练掌握圆的基本性质,勾股定理等知识是解题的关键5、A【分析】首先由ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为A

10、BC的外心【详解】解:ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)故选:A【点睛】此题考查了三角形外心的知识注意三角形的外心即是三角形三边垂直平分线的交点解此题的关键是数形结合思想的应用6、A【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得

11、到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理7、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定

12、理求解边长,是解决本题的主要思路8、C【分析】过点P作交于点M,由菱形得,由,得,故可得,根据SAS证明,求出,即可求出【详解】如图,过点P作交于点M,四边形ABCD是菱形,在与中,在中,即,解得:,故选:C【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键9、C【分析】根据三角形内角和定理求得,根据同弧所对的圆周角相等可得,根据直径所对的圆周角是直角,含30度角的直角三角形的性质,勾股定理即可求得的长【详解】解:为O的直径,在, BD2,故选C【点睛】本题考查了三角形内角和定理,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,含30度角的

13、直角三角形的性质,求得是解题的关键10、C【分析】根据圆周角定理得到BDC的度数,再根据直径所对圆周角是直角,即可得到结论【详解】解:BOC=130,BDC=BOC=65,AB是O的直径,ADB=90,ADC=90-65=25,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键二、填空题1、1【分析】以AB为直径作圆,当CF与圆相切时,AF最大根据切线长定理转化线段AFBCCF,在RtDFC利用勾股定理求解【详解】解:以AB为直径作圆,因为AGB90,所以G点在圆上当CF与圆相切时,AF最大此时FAFG,BCCG设AFx,则DF4x,FC4x,在RtDFC中,利用勾股定理可得

14、:42(4x)2(4x)2,解得x1故答案为:1【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键2、24【分析】连接OA,过点O作ODAB交AB于点C交O于D,再根据勾股定理求出AC的长,进而可得出AB的长【详解】解:连接OA,过点O作ODAB交AB于点C交O于DOCAB,ACCB,OAOD13cm,CD8cm,OCODCD5(cm),AB2AC24(cm),故答案为:24【点睛】本题主要考查垂径定理,掌握垂径定理和勾股定理是解题的关键3、12【分析】根据扇形的面积公式计算即可【详解】=12,故答案为:12【点睛】本题考查了扇形的面积,熟记扇形面

15、积公式是解题的关键4、【分析】连接,证明是含30的,根据即可求解【详解】解:如图,连接,将半径为4,圆心角为120的扇形OAB绕点A逆时针旋转60,,是等边三角形,三点共线,是等边三角形又【点睛】本题考查了求扇形面积,旋转的性质,掌握旋转的性质是解题的关键5、【分析】设的中点为,连接,先求出,则,然后求出,最后根据求解即可【详解】解:设的中点为,连接,四边形ABCD是矩形,ABC=90,又CAB=30,故答案为:【点睛】本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到三、解答题1、(1)见解析;(2)30;(3)【分析】(1)如图所示,连接OA,则,由OA=OB,得到OA

16、B=OBA,即可推出,即OBA+ACB=90,再由OBA=CAE,则ACB+CAE=90,由此即可证明;(2)如图所示,连接CE,则ABC=AEC,由,可得AEC=30,则ABC=30;(3)如图所示,过点O作OFAB于F,则BF=AF,设FP=x,可得BP=BF+PF=6+2x,OP=2FP=2x,推出PH=OP+OH=1+2x,则BP=2+4x,从而得到2+4x=6+2x,由此求解即可【详解】解:(1)如图所示,连接OA,OA=OB,OAB=OBA,OAB+OBA+AOB=180,即OBA+ACB=90,又OBA=CAE,ACB+CAE=90,ADC=90,AEBC;(2)如图所示,连接C

17、E,ABC=AEC,AEBC,AEC=30,ABC=30;(3)如图所示,过点O作OFAB于F,BF=AF,设FP=x,BF=AF=AP+PF=6+x,BP=BF+PF=6+2xABC=30,PHBC, BPH=60,BP=2PH,又OFAB,OFP=90,POF=30,OP=2FP=2x,PH=OP+OH=1+2x,BP=2+4x,2+4x=6+2x,解得x=2,PF=2,BF=8,PO=4,圆O的半径长为【点睛】本题主要考查了圆周角定理,含30度角的直角三角形的性质,等腰三角形的性质,特殊角三角形函数值求度数,勾股定理,垂径定理等等,解题的关键在于能够正确作出辅助线求解2、(1)见解析;(

18、2);(3)【分析】(1)过点D作DEAB交BC于E,由圆内接四边形对角互补可以推出B+A=180,证得ADBC,则四边形ABED是平行四边形,即可得到AB=DE,DEC=B=C,这DE=CD=AB;(2)连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x,由垂径定理可得,CEB=CEF=FCB=90,则FBC+F=FCE+F=90,可得FBC=FCE;由勾股定理得,则,解得,则;(3)EF:BG=1:3,即则 解得,则,如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AMBC与M,过点G作GNBC与

19、N,连接FC,分别求出G点坐标为,C点坐标为;A点坐标为然后求出直线CG的解析式为,直线AB的解析式为,即可得到H的坐标为(,),则【详解】解:(1)如图所示,过点D作DEAB交BC于E,四边形ABCD是圆O的圆内接四边形,A+C=180,B=C,B+A=180,ADBC,四边形ABED是平行四边形,AB=DE,DEC=B=C,DE=CD=AB;(2)如图所示,连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2xCDEB,BF是圆O的直径,CEB=CEF=FCB=90,FBC+F=FCE+F=90,FBC=FCE;,解得,;(3)

20、EF:BG=1:3,即 ,即,解得,如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AMBC与M,过点G作GNBC与N,连接FC,,,,,G点坐标为(,),C点坐标为(,0);,ABC=ECB, ,,,A点坐标为(,)设直线CG的解析式为,直线AB的解析式为,直线CG的解析式为,直线AB的解析式为,联立,解得,H的坐标为(,),【点睛】本题主要考查了圆内接四边形的性质,平行四边形的性质与判定,等腰三角形的性质与判定,解直角三角形,一次函数与几何综合,垂径定理,勾股定理,两点距离公式,解题的关键在于能够正确作出辅助线,利用数形结合的思想求解3、(1)证明见解析;(2)

21、2【分析】(1)连接AF,根据圆周角定理得到,根据,推出BD垂直平分AF,于是得到AB=BF;(2)根据直角三角形的性质得到BF=BC,求得AB=BC,得到,求得,AB=,于是得到结论【详解】解:(1)如图,连接AFAE是O的直径BD是O的直径BD垂直平分AFABBF;(2) F为BC的中点 AF = CF =BFBCABBFABBC,在中, ,AC=3, ACABBF在中, ,AC=3 , O的直径长为2【点睛】本题考查了三角形的外接圆与外心,平行线的性质,勾股定理,圆周角定理,熟练掌握等腰三角形的判定和性质是解题的关键4、(1)证明见解析;(2)【分析】(1)连接,先根据圆周角定理可得,再

22、根据等腰三角形的性质可得,从而可得,然后根据角的和差可得,最后根据圆的切线的判定定理即可得证;(2)设的半径为,先在中,利用勾股定理可求出的值,从而可得的长,再根据相似三角形的判定证出,然后根据相似三角形的性质即可得【详解】证明:(1)如图,连接,是的直径,即,又是的半径,是的切线;(2)设的半径为,则,在中,即,解得,在和中,即,解得【点睛】本题考查了圆周角定理、圆的切线的判定定理、相似三角形的判定与性质等知识点,熟练掌握圆的切线的判定定理和相似三角形的判定是解题关键5、(1)见解析;(2)见解析;(3)【分析】(1)根据在同圆中弦相等所对的圆周角相等证明DE/AC,再证明,即可证得结论;(2)根据三角形外角的性质可证得结论;(3)连接AB,由圆周角定理得,设,得,再证明,证明得,通过解直角三角形求出a的值和,再证明,根据相似三角形的性质可得出,根据可得结论【详解】解:(1)证明:DE/为的直径,即(2)证明:是DEG的外角, (3)连接AB,如图,BD是的直径在中,设,则,由勾股定理得: 和所对的弧都是 在和中 在中, 在中, 由勾股定理得, ,在中, BHM=BED=90,HBM=EBD ,即解得,【点睛】本题考查了与圆有关的综合题,相似三角形的判定和性质以及解直角三角形等知识,解题的关键是学会添加常用辅助线,利用相似三角形解决问题,学会利用参数解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁