《高中优质公开课教学课件推选——函数奇偶性.ppt》由会员分享,可在线阅读,更多相关《高中优质公开课教学课件推选——函数奇偶性.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、现实生活中的“美”,现实生活中的“美”,我们发现现实生活中的许多事物都具有对称性,有的关于直线对称,有的关于点呈中心对称,那么在我们数学领域里,我们会研究函数图象的某对称性!,函数的奇偶性,教学目标,1、理解奇函数、偶函数的概念;,2、函数奇偶性的判断;,3、奇、偶函数图象的性质,【重点】函数奇偶性的概念,【难点】函数奇偶性的判断,x,y,o,x,y,o,观察下列两个函数图象并思考以下问题:(1)这两个函数图象有什么共同特征吗?(2)当自变量x取一对相反数时,相应的两个函数值如何?,这两个函数的图像都关于y轴对称,从函数值对应表可以看到:当自变量x取一对相反数时,相应的两个函数值相同,对于f(
2、x)=x2,f(-x)=(-x)2=x2,即f(-x)=f(x),对于R内任意的一个x,都有f(-x)=f(x),这时我们称函数f(x)=x2为偶函数.,偶函数的概念:,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.,思考:定义中“任意一个x,都有f(-x)=f(x)成立”说明了什么?,说明f(-x)与f(x)都有意义,,即-x、x必须同时属于定义域,,因此偶函数的定义域关于原点对称的。,思考:(1)下列函数图像是偶函数的图像吗?,。,两个函数的图像都关于原点对称.,观察下列两个函数图象并思考以下问题:(1)这两个函数图象有什么共同特征吗?(
3、2)当自变量x取一对相反数时,相应的两个函数值如何?,对于f(x)=x,f(-x)=-x=-f(x),即f(-x)=-f(x).,对于R内任意的一个x,都有f(-x)=-f(x),这时我们称函数f(x)=x为奇函数.,从函数值对应表可以看到:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数.,奇函数的概念:,一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么称函数y=f(x)为奇函数.,(1)定义域关于原点对称是函数具有奇偶性的先决条件。,对于奇、偶函数定义的几点说明:,(2)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性
4、.,(3)函数的奇偶性是函数的整体性质.,奇偶性是对函数的整个定义域而言的.,判断正误,(2)偶函数的图象关于y轴对称.反过来,如果一个函数的图象关于y轴对称,那么这个函数为偶函数,.,奇偶函数图象的性质可用于:判断函数的奇偶性.简化函数图象的画法,(1)奇函数的图象关于原点对称.反过来,如果一个函数的图象关于原点对称,那么这个函数为奇函数.,2.奇、偶函数图象的性质:,例1、已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象.,解:画法略,变式练习:如果函数y=f(x)是奇函数呢?它在y轴右边的图象如下图,请画出在y轴左边的图象.,思考:如何判断一个函数的奇偶性呢?
5、,(1)图像法(2)定义法,例2.根据下列函数图象,判断函数奇偶性.,y,x,y,x,y,x,-1,2,y,x,-1,1,偶,奇,非奇非偶,奇,图象法,例3.判断下列函数的奇偶性,f(x)为奇函数.,解:定义域为x|x0,解:f(x)的定义域为x|x0.,f(x)为偶函数.,定义法,用定义法判断函数奇偶性解题步骤:,(1)先确定函数定义域,并判断定义域是否关于原点对称;,(2)求f(-x),找f(-x)与f(x),-f(x)的关系;,(3)作出结论:若f(-x)=f(x),则f(x)是偶函数;若f(-x)=-f(x),则f(x)是奇函数.,2.(1)判断函数的奇偶性.(2)如图是函数图像的一部
6、分,能否根据f(x)的奇偶性画出它在y轴左边的图像吗?,小试牛刀:,1.判断下列函数的奇偶性,(1)f(x)=x3-2x;(2)f(x)=2x4+3x2,(4)f(x)=x+1,(3)f(x)=0(xR),(1),(2),例4、快速判断下列函数的奇偶性:,(4)f(x)=x+1,解:函数f(x)的定义域为Rf(-x)=f(x)=0,又f(-x)=-f(x)=0,f(x)为既奇又偶函数,(3)f(x)=0(xR),根据奇偶性,函数可划分为四类:,1.奇函数;2.偶函数;3.既奇又偶函数;4.非奇非偶函数.,解:函数定义域为Rf(-x)=-x+1,-f(x)=-x-1,f(-x)f(x),且f(-
7、x)f(x).f(x)为非奇非偶函数.,课堂小结,1.奇偶性定义:对于函数f(x),在它的定义域内,若有f(-x)=-f(x),则f(x)叫做奇函数;若有f(-x)=f(x),则f(x)叫做偶函数。2.定义域关于原点对称是函数具有奇偶性的前提3.图象性质:一个函数为奇函数它的图象关于原点对称一个函数为偶函数它的图象关于y轴对称4.判断奇偶性方法:图象法,定义法。,5.判断函数奇偶性的步骤考查函数定义域是否关于原点对称;判断f(-x)与f(x)、-f(x)的关系;作出结论.,自主检测:,一、填空:1、如果对于函数f(x)的定义域内任意一个x,都有那么函数f(x)就叫做偶函数.2、奇函数的图象关于对称。二、判断正误:1、偶函数的图形不一定关于y轴对称()2、y=x是奇函数.()三、判断下列函数的奇偶性,谢谢光临指导!,