《等差数列前n项和的公式说课稿汇总.docx》由会员分享,可在线阅读,更多相关《等差数列前n项和的公式说课稿汇总.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、等差数列前n项和的公式说课稿等差数列前n项和的公式说课稿1教学目标A、学问目标:驾驭等差数列前n项和公式的推导方法;驾驭公式的运用。B、实力目标:(1)通过公式的探究、发觉,在学问发生、发展以及形成过程中培育学生视察、联想、归纳、分析、综合和逻辑推理的实力。(2)利用以退求进的思维策略,遵循从特别到一般的认知规律,让学生在实践中通过视察、尝试、分析、类比的方法导出等差数列的求和公式,培育学生类比思维实力。(3)通过对公式从不同角度、不同侧面的剖析,培育学生思维的敏捷性,提高学生分析问题和解决问题的实力。C、情感目标:(数学文化价值)(1)公式的发觉反映了普遍性寓于特别性之中,从而使学生受到辩证
2、唯物主义思想的熏陶。(2)通过公式的运用,树立学生大众教学的思想意识。(3)通过生动详细的现实问题,令人着迷的数学史,激发学生探究的爱好和欲望,树立学生求真的志气和自信念,增加学生学好数学的心理体验,产生酷爱数学的情感。教学重点:等差数列前n项和的公式。教学难点:等差数列前n项和的公式的敏捷运用。教学方法:启发、探讨、引导式。教具:现代教化多媒体技术。教学过程一、创设情景,导入新课。师:上几节,我们已经驾驭了等差数列的概念、通项公式及其有关性质,今日要进一步探讨等差数列的前n项和公式。提起数列求和,我们自然会想到德国宏大的数学家高斯神速求和的故事,小高斯上小学四年级时,一次老师布置了一道数学习
3、题:把从1到100的自然数加起来,和是多少?年仅10岁的小高斯略一思索就得到答案5050,这使老师特别惊讶,那么高斯是采纳了什么方法来奇妙地计算出来的呢?假如大家也懂得那样奇妙计算,那你们就是二十世纪末的新高斯。(老师视察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。例1,计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外,还有没有其他好玩的解法呢?小组探讨后,让学生自行发言解答。生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。生2:可设S=1+2+3+4+5+6+7+8+9+10,依据加法交换律,又可写成S=10+9+8
4、+7+6+5+4+3+2+1。上面两式相加得2S=11+10+.+11=1011=110所以我们得到S=55,即1+2+3+4+5+6+7+8+9+10=55师:高斯神速计算出1到100全部自然数的各的方法,和上述两位同学的方法相类似。理由是:1+100=2+99=3+98=.=50+51=101,有50个101,所以1+2+3+.+100=50101=5050。请同学们想一下,上面的方法用到等差数列的哪一特性质呢?生3:数列an是等差数列,若m+n=p+q,则am+an=ap+aq。二、教授新课(尝试推导)师:假如已知等差数列的首项a1,项数为n,第n项an,依据等差数列的性质,如何来导出它
5、的前n项和Sn计算公式呢?依据上面的例子同学们自己完成推导,并请一位学生板演。生4:Sn=a1+a2+.an-1+an也可写成Sn=an+an-1+.a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+.(an+a1)n个=n(a1+an)所以Sn=(I)师:好!假如已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得Sn=na1+ d(II)上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发觉,它可与梯形面积公式(上底+下底)高2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总
6、结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?an=a1+(n-1)d,Sn=na1+ d;这些量中有几个可自由改变?(三个)从而了解到:只要知道其中随意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。三、公式的应用(通过实例演练,形成技能)。1、干脆代公式(让学生快速熟识公式,即用基本量观点相识公式)例2、计算:(1)1+2+3+.+n(2)1+3+5+.+(2n-1)(3)2+4+6+.+2n(4)1-2+3-4+5-6+.+(2n-1)-2n请同学们先完成(1)-(3),并请一位同学回答。生5:干脆利用等差数列求和公式(I),得(
7、1)1+2+3+.+n=(2)1+3+5+.+(2n-1)=(3)2+4+6+.+2n=n(n+1)师:第(4)小题数列共有几项?是否为等差数列?能否干脆运用Sn公式求解?若不能,那应如何解答?小组探讨后,让学生发言解答。生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式=1+3+5+.+(2n-1)-(2+4+6+.+2n)=n2-n(n+1)=-n生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=-1-1-.-1=-nn个师:很好!在解题时我们应细致视察,找寻规律,往往会找寻到好的方法。留意在运用Sn公式时,要看清
8、等差数列的项数,否则会引起错解。例3、(1)数列an是公差d=-2的等差数列,假如a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4又d=-2,a1=6S12=12 a1+66(-2)=-60生9:(2)由a1+a2+a3=12,a1+d=4a8+a9+a10=75,a1+8d=25解得a1=1,d=3 S10=10a1+=145师:通过上面例题我们驾驭了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们依据例3自己编题,作为本节的课外
9、练习题,以便下节课沟通。师:(接着引导学生,将第(2)小题改编)数列an等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n若此题不求a1,d而只求S10时,是否肯定非来求得a1,d不行呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。2、用整体观点相识Sn公式。例4,在等差数列an,(1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(老师启发学生解)师:来看第(1)小题,写出的计算公式S16=8(a1+a6)与已知相比较,你发觉了什么?生10:依据等差数列的性质,有a1+a16=a2+a15=a5+a1
10、2=18,所以S16=818=144。师:对!(简洁小结)这个题目依据已知等式是不能干脆求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生视察当d0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来相识Sn公式后,这留给同学们课外接着思索。最终请大家课外思索Sn公式(1)的逆命题:已知数列an的前n项和为Sn,若对于全部自然数n,都有Sn=。数列an是否为等差数列,并说明理由。四、小结与作业。师:接下来请同学们一起来小结本节课所讲的内容。生11
11、:1、用倒序相加法推导等差数列前n项和公式。2、用所推导的两个公式解决有关例题,熟识对Sn公式的运用。生12:1、运用Sn公式要留意此等差数列的项数n的值。2、详细用Sn公式时,要依据已知敏捷选择公式(I)或(II),驾驭知三求二的解题通法。3、当已知条件不足以求此项a1和公差d时,要仔细视察,敏捷应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。师:通过以上几例,说明在解题中敏捷应用所学性质,要订正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发觉更多的性质,主动主动地去学习。本节所渗透的数学方法;视察、尝试、分析、归纳、类比、特定系数等。数学思想:类
12、比思想、整体思想、方程思想、函数思想等。作业:P49:13、14、15、17等差数列前n项和的公式说课稿2以下是中学数学等差数列前n项和的公式说课稿,仅供参考。教学目标A、学问目标:驾驭等差数列前n项和公式的推导方法;驾驭公式的运用。B、实力目标:(1)通过公式的探究、发觉,在学问发生、发展以及形成过程中培育学生视察、联想、归纳、分析、综合和逻辑推理的实力。(2)利用以退求进的思维策略,遵循从特别到一般的认知规律,让学生在实践中通过视察、尝试、分析、类比的方法导出等差数列的求和公式,培育学生类比思维实力。(3)通过对公式从不同角度、不同侧面的剖析,培育学生思维的敏捷性,提高学生分析问题和解决问
13、题的实力。C、情感目标:(数学文化价值)(1)公式的发觉反映了普遍性寓于特别性之中,从而使学生受到辩证唯物主义思想的熏陶。(2)通过公式的运用,树立学生大众教学的思想意识。(3)通过生动详细的现实问题,令人着迷的数学史,激发学生探究的爱好和欲望,树立学生求真的志气和自信念,增加学生学好数学的心理体验,产生酷爱数学的情感。教学重点:等差数列前n项和的公式。教学难点:等差数列前n项和的公式的敏捷运用。教学方法:启发、探讨、引导式。教具:现代教化多媒体技术。教学过程一、创设情景,导入新课。师:上几节,我们已经驾驭了等差数列的概念、通项公式及其有关性质,今日要进一步探讨等差数列的前n项和公式。提起数列
14、求和,我们自然会想到德国宏大的数学家高斯神速求和的故事,小高斯上小学四年级时,一次老师布置了一道数学习题:把从1到100的自然数加起来,和是多少?年仅10岁的小高斯略一思索就得到答案5050,这使老师特别惊讶,那么高斯是采纳了什么方法来奇妙地计算出来的呢?假如大家也懂得那样奇妙计算,那你们就是二十世纪末的新高斯。(老师视察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。例1,计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外,还有没有其他好玩的解法呢?小组探讨后,让学生自行发言解答。生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到
15、55。生2:可设S=1+2+3+4+5+6+7+8+9+10,依据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。上面两式相加得2S=11+10+.+11=1011=11010个所以我们得到S=55,即1+2+3+4+5+6+7+8+9+10=55师:高斯神速计算出1到100全部自然数的各的方法,和上述两位同学的方法相类似。理由是:1+100=2+99=3+98=.=50+51=101,有50个101,所以1+2+3+.+100=50101=5050。请同学们想一下,上面的方法用到等差数列的哪一特性质呢?生3:数列an是等差数列,若m+n=p+q,则am+an=ap+aq.
16、二、教授新课(尝试推导)师:假如已知等差数列的首项a1,项数为n,第n项an,依据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?依据上面的例子同学们自己完成推导,并请一位学生板演。生4:Sn=a1+a2+.an-1+an也可写成Sn=an+an-1+.a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+.(an+a1)n个=n(a1+an)所以Sn=#FormatImgID_0#(I)师:好!假如已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得Sn=na1+#FormatImgID_1#d(II) 上面(I)、(II)两个式子称为等差
17、数列的前n项和公式。公式(I)是基本的,我们可以发觉,它可与梯形面积公式(上底+下底)高2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?an=a1+(n-1)d,Sn=#FormatImgID_2#=na1+#FormatImgID_3#d;这些量中有几个可自由改变?(三个)从而了解到:只要知道其中随意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。三、公式的应用(通过实例演练,形成技能)。1、干脆代公式(让学生快速熟识公式,即用基本量观点相识公式)例2、计
18、算:(1)1+2+3+.+n(2)1+3+5+.+(2n-1)(3)2+4+6+.+2n(4)1-2+3-4+5-6+.+(2n-1)-2n请同学们先完成(1)-(3),并请一位同学回答。生5:干脆利用等差数列求和公式(I),得(1)1+2+3+.+n=#FormatImgID_4#(2)1+3+5+.+(2n-1)=#FormatImgID_5#(3)2+4+6+.+2n=#FormatImgID_6#=n(n+1)师:第(4)小题数列共有几项?是否为等差数列?能否干脆运用Sn公式求解?若不能,那应如何解答?小组探讨后,让学生发言解答。生6:(4)中的数列共有2n项,不是等差数列,但把正项和
19、负项分开,可看成两个等差数列,所以原式=1+3+5+.+(2n-1)-(2+4+6+.+2n)=n2-n(n+1)=-n生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=-1-1-.-1=-nn个师:很好!在解题时我们应细致视察,找寻规律,往往会找寻到好的方法。留意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。例3、(1)数列an是公差d=-2的等差数列,假如a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4又d=-2,a1=6S12=12 a1+66(-2)=
20、-60生9:(2)由a1+a2+a3=12,a1+d=4a8+a9+a10=75,a1+8d=25解得a1=1,d=3 S10=10a1+#FormatImgID_7#=145师:通过上面例题我们驾驭了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们依据例3自己编题,作为本节的课外练习题,以便下节课沟通。师:(接着引导学生,将第(2)小题改编)数列an等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n若此题不求a1,d而只求S10时,是否肯定非来求得a1,d不行呢?引导学生运用等差数
21、列性质,用整体思想考虑求a1+a10的值。2、用整体观点相识Sn公式。例4,在等差数列an, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(老师启发学生解)师:来看第(1)小题,写出的计算公式S16=#FormatImgID_8#=8(a1+a6)与已知相比较,你发觉了什么?生10:依据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=818=144。师:对!(简洁小结)这个题目依据已知等式是不能干脆求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。师:由于
22、时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生视察当d0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来相识Sn公式后,这留给同学们课外接着思索。最终请大家课外思索Sn公式(1)的逆命题:已知数列an的前n项和为Sn,若对于全部自然数n,都有Sn=#FormatImgID_9#。数列an是否为等差数列,并说明理由。四、小结与作业。师:接下来请同学们一起来小结本节课所讲的内容。生11:1、用倒序相加法推导等差数列前n项和公式。2、用所推导的两个公式解决有关例题,熟识对Sn公式的运用。生12:1、运用Sn公式要留意此等差数列的项数n的值。2、详细用Sn公式时,要依据已知敏捷选择公式(I)或(II),驾驭知三求二的解题通法。3、当已知条件不足以求此项a1和公差d时,要仔细视察,敏捷应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。师:通过以上几例,说明在解题中敏捷应用所学性质,要订正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发觉更多的性质,主动主动地去学习。本节所渗透的数学方法;视察、尝试、分析、归纳、类比、特定系数等。数学思想:类比思想、整体思想、方程思想、函数思想等。