《第01讲 一次方程(组)(学生版)A4-精品文档资料整理.docx》由会员分享,可在线阅读,更多相关《第01讲 一次方程(组)(学生版)A4-精品文档资料整理.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学 高斯教育学科教师辅导讲义学员姓名:年 级:辅导科目:学科教师:五块石1上课时间授课主题第01讲 一次方程(组)知识图谱错题回顾顾题回顾一次方程(组)知识精讲一一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程一元一次方程的一般形式:,为一次项系数,为常数项1 判断是一元一次方程的标准:整式方程 一元方程 一次方程二一元一次方程的解一元一次方程的解:使方程左、右两边相等的未知数的值叫做方程的解三二元一次方程组含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程判定一个方程是二元一次方程必须同时满足三个条件:(1)方程两边的代数式都是整式
2、分母中不能含有字母;(2)有两个未知数“二元”;(3)含有未知数的项的最高次数为1“一次”关于x、y的二元一次方程的一般形式:(且)方法点拨列方程组解应用题的步骤与列一元一次方程解应用题的步骤类似,具体是:1审题:透彻理解题意,弄清问题中的已知量和未知量,找出问题给出和涉及的相等关系2设元(未知数):根据题意,可以直接设未知数,也可以间接设未知数3列代数式和方程组:用含所设未知数的代数式表示其他未知数,根据题中给出的等量关系列出方程组,一般情况下,未知数个数与方程个数是相同的4解方程(组)5检验:检验方程的根是否符合题意6作答:检验后作出符合题目要求的答案列方程(组)解应用题的实质是先把实际问
3、题转化为数学问题(设元、列方程(组),再将数学问题解决从而解决实际问题在这个过程中,列方程起着承前启后的作用三点剖析一考点:解一次方程(组),含参数的一次方程(组),一次方程(组)的实际应用二重难点:解含参数的一次方程(组)三 易错点:1 一般的,二元一次方程都有无数组解,但如果确定了一个未知数的值,那么另一个未知数的值也就随之确定了2 无论是二元一次方程还是二元一次方程组,已知它们的解,代入之后都满足对应的方程题模精讲题模一:解一次方程(组)例1.1.1下列方程中是关于的一元一次方程的是( )ABCD例1.1.2解方程:例1.1.3若方程是关于的一元一次方程,则的取值是_例1.1.4已知关于
4、的议程组的解满足,则的取值范围是( )ABCD题模二:含参数的一次方程(组)例1.2.1解关于的方程:例1.2.2已知关于x的方程有正整数解,求整数m的值例1.2.3甲、乙二人同解关于、的二元一次方程组,甲得正确解为;乙将看错,得其解为,求、的值题模三:一次方程(组)的实际应用例1.3.1某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天
5、能比原来多掘进0.3米按此施工进度,能够比原来少用多少天完成任务?例1.3.2为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计)已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值例1.3.3列方程解应用题油桶制造厂的某车间主要负责生产
6、制造油桶用的的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片如图,一个油桶由两个圆形铁片和一个长方形铁片相配套 生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?例1.3.4某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车(1)每名熟练工和新工人每月分别可以安装多少辆电动
7、汽车?(2)如果工厂招聘n(0n10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?随堂练习随练1.1随练1.2若是关于、的二元一次方程,则的值是()A1B0C0或1D任意实数随练1.3 已知关于x、y的方程组和的解相同,求a、b的值随练1.4解关于的方程:随练1.5解方程:(1)(2)(3)随练1.6m取何整数值时,关于x、y的
8、方程组的解x和y都是整数?随练1.7我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?自我总结 课后作业作业1解方程:作业2设a,b,c都是非负数,且满足a+b+c=3,3a+bc=5,则5a+4b+2c的最大值是_作业3如
9、果关于x,y的二元一次方程组的解是,那么关于x,y的二元一次方程组的解是_作业4已知关于x的方程有无数多解,求a、b的值作业5已知方程,问a、b分别满足什么条件时:(1)方程有唯一解?(2)方程无解?(3)方程有无穷多个解?作业6已知方程组与有相同的解,求、的值作业7我们规定:若的一元一次方程的解为,则称该方程为定解方程,例如:的解为,则该方程就是定解方程请根据上边规定解答下列问题:(1)若的一元一次方程是定解方程,则 ;(2)若的一元一次方程是定解方程,它的解为,求,的值;(3)若的一元一次方程和都是定解方程,求代数式的值作业8已知关于x的方程的解是方程的解的11倍,求m的值和两个方程的解作
10、业9若k为整数,则使方程的解也是整数的k的值有( )A4个B8个C12个D16个作业10要使关于x、y的方程组的解都是整数,k应取哪些整数值?作业11解关于x的方程(1);(2);(3);(4);(5)作业12现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?作业13为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?6