浙江省11市年中考数学试题分类解析汇编:专题17-阅读理解型问题.doc

上传人:豆**** 文档编号:28496079 上传时间:2022-07-28 格式:DOC 页数:18 大小:819.50KB
返回 下载 相关 举报
浙江省11市年中考数学试题分类解析汇编:专题17-阅读理解型问题.doc_第1页
第1页 / 共18页
浙江省11市年中考数学试题分类解析汇编:专题17-阅读理解型问题.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《浙江省11市年中考数学试题分类解析汇编:专题17-阅读理解型问题.doc》由会员分享,可在线阅读,更多相关《浙江省11市年中考数学试题分类解析汇编:专题17-阅读理解型问题.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品文档,仅供学习与交流,如有侵权请联系网站删除浙江省11市2015年中考数学试题分类解析汇编(20专题)专题17:阅读理解型问题江苏泰州鸣午数学工作室 编辑1. (2015年浙江宁波4分) 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为【 】A. B. C. D. 【答案】A.【考点】多元方程组的应用(几何问题).【分析】如答图,设原住房平面图长方形的周长为,的长和宽分别为,的边长分别为.根据题意,得,得,将代入,得(定值),将代入,得(定值),而由已列方程组得不到.分割后不用测

2、量就能知道周长的图形标号为.故选A.2. (2015年浙江绍兴4分)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换. 已知抛物线经过两次简单变换后的一条抛物线是,则原抛物线的解析式不可能的是【 】A. B. C. D. 【答案】B.【考点】新定义;平移的性质;分类思想的应用.【分析】根据定义,抛物线经过两次简单变换后的一条抛物线是,即将抛物线向右平移4个单位或向上平移2个单位或向右平移2个单位且向上平移1个单位,得到抛物线. 抛物线向左平移4个单位得到;抛物线向下平移2个单位得到;抛物线向左平移2个单位且向下平移1个单位得到,原抛物线的解析式不可能

3、的是.故选B.3. (2015年浙江台州4分)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是【 】A.若甲对,则乙对 B.若乙对,则甲对 C.若乙错,则甲错 D.若甲粗,则乙对【答案】B.【考点】逻辑判断推理题型问题;真假命题的判定. 【分析】针对逻辑判断问题逐一分析作出判断:A.若甲对,即只参加一项的人数大于14人,等价于等于15或16或17或18或19人,则两项都参加的人数为5或4或3或2或1人,故乙不对; B.若乙对,即两项都参加的人数小于5人,等价于等于4或3或2或1

4、人,则只参加一项的人数为等于16或17或18或19人,故甲对; C.若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对可能错; D.若甲粗,即只参加一项的人数小于或等于14人,则两项都参加的人数大于或等于6人,故乙错.综上所述,四个命题中,其中真命题是“若乙对,则甲对”. 故选B.4. (2015年浙江义乌3分)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换. 已知抛物线经过两次简单变换后的一条抛物线是,则原抛物线的解析式不可能的是【 】A. B. C. D. 【答案】B.【考点】新定义;平移的性质;分类思想的

5、应用.【分析】根据定义,抛物线经过两次简单变换后的一条抛物线是,即将抛物线向右平移4个单位或向上平移2个单位或向右平移2个单位且向上平移1个单位,得到抛物线. 抛物线向左平移4个单位得到;抛物线向下平移2个单位得到;抛物线向左平移2个单位且向下平移1个单位得到,原抛物线的解析式不可能的是.故选B.1. (2015年浙江湖州4分)如图,已知抛物线C1:和C2:都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是 和 【

6、答案】;(答案不唯一).【考点】开放型;新定义;中心对称的性质;曲线上点的坐标与方程的关系;矩形的性质;二次函数的性质;解直角三角形. 【分析】根据定义,点M与点N关于原点O成中心对称,可取,两抛物线的顶点分别为A,B,关于原点O成中心对称,四边形ANBM是矩形,可取.抛物线C1:和C2:都经过原点,.抛物线C1:和C2:.抛物线C1经过点,C2经过点,一对抛物线解析式可以是和,即和.2. (2015年浙江嘉兴5分)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为 【答案】.【考点】一元一次方程的应用.【分析】设“它”为,

7、根据题意,得,解得.3. (2015年浙江绍兴5分) 实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示. 若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.【答案】或或【考点】方程思想和分类思想的应用【分析】甲、乙、丙三个圆柱形容器底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,注水1分钟,甲、丙的水位上升cm.设开始注入分钟的水量后,甲与乙的水位高

8、度之差是0.5cm.甲与乙的水位高度之差0.5cm时有三种情况:乙的水位低于甲的水位时,有(分钟).甲的水位低于乙的水位,甲的水位不变时,(分钟),此时丙容器已向甲容器溢水.(分钟),(cm),即经过分钟丙容器的水到达管子底端,乙的水位上升cm,(分钟).甲的水位低于乙的水位,乙的水位到达管子底端,甲的水位上升时,乙的水位到达管子底端的时间为(分钟),(分钟).综上所述,开始注入或或分钟的水量后,甲与乙的水位高度之差是0.5cm.4. (2015年浙江义乌4分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管

9、子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示. 若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.【答案】或或【考点】方程思想和分类思想的应用【分析】甲、乙、丙三个圆柱形容器底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,注水1分钟,甲、丙的水位上升cm.设开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.甲与乙的水位高度之差0.5cm时有三种情况:乙的水位低于甲的水位时,有(分钟).甲的水位低于乙的水位,甲的水位不变时,(分钟),此时丙容器已向甲容器溢水.(分钟),(c

10、m),即经过分钟丙容器的水到达管子底端,乙的水位上升cm,(分钟).甲的水位低于乙的水位,乙的水位到达管子底端,甲的水位上升时,乙的水位到达管子底端的时间为(分钟),(分钟).综上所述,开始注入或或分钟的水量后,甲与乙的水位高度之差是0.5cm.5. (2015年浙江舟山4分)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式(是多边形内的格点数,是多边形边界上的格点数)计算,这个公式称为“皮克定理”. 现有一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数= (用含的代数式表示);(2

11、)设该格点多边形外的格点数为,则= 【答案】(1);(2)118.【考点】网格问题;数形结合思想的应用.【分析】(1)由得.(2)方格纸共有200个格点,.将代入,得.1. (2015年浙江杭州8分)如图1,O的半径为r(r0),若点P在射线OP上,满足OPOP=r2,则称点P是点P关于O的“反演点”,如图2,O的半径为4,点B在O上,BOA=60,OA=8,若点A、B分别是点A,B关于O的反演点,求AB的长.【答案】解:O的半径为4,点A、B分别是点A,B关于O的反演点,点B在O上, OA=8,即.点B的反演点B与点B重合.如答图,设OA交O于点M,连接BM,OM=OB,BOA=60,OBM

12、是等边三角形.,BMOM.在中,由勾股定理得.【考点】新定义;等边三角形的判定和性质;勾股定理. 【分析】先根据定义求出,再作辅助线:连接点B与OA和O的交点M,由已知BOA=60判定OBM是等边三角形,从而在中,由勾股定理求得AB的长.2. (2015年浙江嘉兴8分)小明解方程的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【答案】解:小明的解法有三处错误:步骤去分母错误;步骤去括号错误;步骤之前缺少“检验”步骤.正确的解答过程如下:去分母,得,去括号,得,移项,得,合并同类项,得,两边同除以,得.经检验,是原方程的解,原方程的解是.【考点】解分式方程.【分析】首先去掉分母,观察

13、可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.3. (2015年浙江嘉兴14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;如图2,小红画了一个RtABC,其中ABC=90,AB=2,BC=1,并将RtABC沿B的平分线方向平移得到,连结. 小红要使平移后的四边形是“等邻边四边形”,应

14、平移多少距离(即线段的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD中,AB=AD,BAD+BCD=90,AC,BD为对角线,.试探究BC,CD,BD的数量关系.【答案】解:(1)(答案不唯一).(2)正确.理由如下:四边形的对角线互相平分,这个四边形是平行四边形.四边形是“等邻边四边形”,这个四边形有一组邻边相等.这个四边形是菱形.ABC=90,AB=2,BC=1,.将RtABC平移得到,i)如答图1,当时,;ii)如答图2,当时,;iii)如答图3,当时,延长交于点,则.平分,.设,则.在中,解得(不合题意,舍去).iv)如答图4,当时,同ii)方法,设,可得,即,解得(不合题意,

15、舍去).综上所述,要使平移后的四边形是“等邻边四边形”,应平移2或或或的距离.(3)BC,CD,BD的数量关系为.如答图5,将绕点A旋转到.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用.【分析】(1)根据定义,添加或或或即可(答案不唯一).(2)根据定义,分,四种情况讨论即可.(3)由,可将绕点A旋转到,构成全等三角形:,从而得到,进而证明得到,通过角的转换,证明,根据勾股定理即可得出.4. (2015年浙江宁波10分)在边长为1的小正方形组成的方格纸中,若多边形的各顶

16、点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形。记格点多边形内的格点数为,边界上的格点数为,则格点多边形的面积可表示为,其中,为常数.(1)在下面的方格纸中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定,的值.【答案】解:(1)作图如下:(2)三角形:,平行四边形(非菱形):,菱形:.任选两组代入,如:,解得.【考点】开放型;网格问题;图形的设计;待定系数法、方程思想和数形结合思想的应用. 【分析】(1)根据三角形、平行四边形(非菱形)、菱形的面积公式设计图形.(2)应用待定系数法,根据三角形、平行四边形(非

17、菱形)、菱形的值代入列方程组求解即可.5. (2015年浙江宁波12分)如图1,点P为MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果APB绕点P旋转时始终满足,我们就把APB叫做MON的智慧角.(1)如图2,已知MON=90,点P为MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且APB=135. 求证:APB是MON的智慧角;(2)如图1,已知MON=(0DEBD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D是线段

18、AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MNAMBN,AMC,MND和NBM均是等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究,和的数量关系,并说明理由.【答案】解:(1)点M,N是线段AB的勾股分割点, AM=2,MN=3,若MN为斜边,则,即,解得.若BN为斜边,则,即,解得.BN的长为或.(2)证明:点D,E是线段BC的勾股分割点,且ECDEBD,在ABC中,FG是中位线,AD,AE分别交FG于点M,N,FM、MN、NG分别是ABD、ADE、AEC的中位线.BD=2FM,DE=2M

19、N,EC=2NG.,即.点M,N是线段FG的勾股分割点.(3)如答图1,C,D是线段AB的勾股分割点.(4).理由如下:设,是的中点,.,均为等边三角形,.点,是线段的勾股分割点,.,又. 在和中,【考点】新定义和阅读理解型问题;开放型和探究型问题;勾股定理;三角形中位线定理;尺规作图(复杂作图);等边三角形的性质;全等、相似三角形的判定和性质;分类思想和数形结合思想的应用.【分析】(1)根据定义,分MN为斜边和BN为斜边两种情况求解即可.(2)判断FM、MN、NG分别是ABD、ADE、AEC的中位线后代入即可证明结论.(3)过点C作AB的垂线MN,在MN截取CE=CA;连接BE,作BE的垂直

20、平分线PQ交AB于点D.则点C,D是线段AB的勾股分割点.(作法不唯一)(4)首先根据全等、相似三角形的判定和性质证明AMC和NBM是全等的等边三角形,再证明.10. (2015年浙江温州8分)各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形. 如何计算它的面积?奥地利数学家皮克(G.Pick,18591942)证明了格点多边形的面积公式:,其中表示多边形内部的格点数,表示多边形边界上的格点数,S表示多边形的面积. 如图,.(1)请在图甲中画一个格点正方形,使它内部只含有4个格点,并写出它的面积;(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(

21、注:图甲、图乙在答题纸上)【答案】解:(1)画法不唯一,如答图或.(2)画法不唯一,如答图或【考点】新定义;网格问题;图形的设计.【分析】(1)根据题意作图和计算面积.(2)根据题意作图.11. (2015年浙江义乌8分)如果抛物线过定点M(1,1),则称次抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式. 小敏写出了一个答案:,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.【答案】解:(1)答案不唯一,如.(2),该抛物线顶点坐标为.又定点抛物线过定点M

22、(1,1),即.顶点纵坐标为.,时,最小,即抛物线顶点纵坐标的值最小,此时,抛物线的解析式为.【考点】开放型;新定义;二次函数的性质;曲线上点的坐标与方程的关系.【分析】(1)根据定义任意写一个即可.(2)由定义得到,代入抛物线顶点坐标的解析式,化为顶点式,根据二次函数最值性质求出,从而得到抛物线的解析式.12. (2015年浙江义乌10分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角DAG=,其中0180,连结DF,BF,如图.(1)若=0,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1

23、)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【答案】解:(1)证明:如答图1,正方形ABCD和正方形AEFG中,GF=EF,AG=AE,AD=AB,DG=BE.又DGF=BEF=90,DGFBEF(SAS).DF=BF.(2)反例图形如答图2:(3)不唯一,如点F在正方形ABCD内,或180.【考点】开放型;正方形的性质;原命题和逆命题;真命题和假命题【分析】(1)由正方形的性质,通过SAS证明DGFBEF,从而得到结论.(2)(1)中命题的逆命题是:若DF=BF,则=0,它是假命题的反例是=180的情况.(3)限制点F范围或的

24、范围即可.13. (2015年浙江舟山12分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;如图2,小红画了一个RtABC,其中ABC=90,AB=2,BC=1,并将RtABC沿B的平分线方向平移得到,连结. 小红要使平移后的四边形是“等邻边四边形”,应平移多少距离(即线段的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD中,AB=AD,BAD+

25、BCD=90,AC,BD为对角线,.试探究BC,CD,BD的数量关系.【答案】解:(1)(答案不唯一).(2)正确.理由如下:四边形的对角线互相平分,这个四边形是平行四边形.四边形是“等邻边四边形”,这个四边形有一组邻边相等.这个四边形是菱形.ABC=90,AB=2,BC=1,.将RtABC平移得到,i)如答图1,当时,;ii)如答图2,当时,;iii)如答图3,当时,延长交于点,则.平分,.设,则.在中,解得(不合题意,舍去).iv)如答图4,当时,同ii)方法,设,可得,即,解得(不合题意,舍去).综上所述,要使平移后的四边形是“等邻边四边形”,应平移2或或或的距离.(3)BC,CD,BD的数量关系为.如答图5,将绕点A旋转到.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用.【分析】(1)根据定义,添加或或或即可(答案不唯一).(2)根据定义,分,四种情况讨论即可.(3)由,可将绕点A旋转到,构成全等三角形:,从而得到,进而证明得到,通过角的转换,证明,根据勾股定理即可得出.【精品文档】第 18 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁