浙江省11市年中考数学试题分类解析汇编-专题11-四边形问题.doc

上传人:豆**** 文档编号:28544775 上传时间:2022-07-28 格式:DOC 页数:24 大小:969KB
返回 下载 相关 举报
浙江省11市年中考数学试题分类解析汇编-专题11-四边形问题.doc_第1页
第1页 / 共24页
浙江省11市年中考数学试题分类解析汇编-专题11-四边形问题.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《浙江省11市年中考数学试题分类解析汇编-专题11-四边形问题.doc》由会员分享,可在线阅读,更多相关《浙江省11市年中考数学试题分类解析汇编-专题11-四边形问题.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品文档,仅供学习与交流,如有侵权请联系网站删除专题11:四边形问题1. (2015年浙江湖州3分)如图,AC是矩形ABCD的对角线,O是ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OGDG,且O的半径长为1,则下列结论不成立的是【 】A. CD+DF=4 B. C. D. 【答案】A.【考点】折叠问题;正方形的判定和性质;矩形的判定和性质;折叠对称的性质;全等三角形的判定和性质;切线的性质;切线长定理;勾股定理;方程思想的应用.【分析】如答图,过点O分别作AD、AB、BC的垂线,垂足分别是N、P、M,OE与

2、AC交于点S.则四边形BMOP是正方形,四边形ANOP是矩形.O的半径长为1,.设,由折叠知,OG=DG,OGDG,即.又O是ABC的内切圆,即.联立,解得.由折叠知,又,即,解得.A.,选项结论不成立;B.,选项结论成立; C.,选项结论成立; D. ,选项结论成立.故选A.2. (2015年浙江金华3分)如图,正方形ABCD和正三角形AEF都内接于O,EF与BC,CD分别相交于点G,H,则的值是【 】A. B. C. D. 2【答案】C.【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接,与

3、交于点.则根据对称性质,经过圆心,垂直 平分,.不妨设正方形ABCD的边长为2,则.是O的直径,.在中,在中,.易知是等腰直角三角形,.又是等边三角形,.故选C.3. (2015年浙江宁波4分) 如图,ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使ABECDF,则添加的条件不能为【 】A. BE=DF B. BF=DE C. AE=CF D. 1=2【答案】C.【考点】平行四边形的性质;全等三角形的判定. 【分析】根据平行四边形的性质和全等三角形的判定对各选项进行分析,作出判断:四边形是平行四边形,ABCD,AB=CD.ABE=CDF.若添加BE=DF,则根据SAS可判定ABEC

4、DF;若添加BF=DE,由等量减等量差相等得BE=DF,则根据SAS可判定ABECDF;若添加AE=CF,是AAS不可判定ABECDF;若添加1=2,则根据ASA可判定ABECDF.故选C.4. (2015年浙江衢州3分)如图,在ABCD中,已知平分交于点,则的长等于【 】A. B. C. D. 【答案】C【考点】平行四边形的性质;等腰三角形的判定和性质【分析】四边形ABCD是平行四边形,.又平分,.故选C.5. (2015年浙江衢州3分)如图,已知某广场菱形花坛的周长是24米,则花坛对角线的长等于【 】 A. 米 B. 米 C. 米 D. 米【答案】A.【考点】菱形的性质;锐角三角函数定义;

5、特殊角的三角函数值.【分析】菱形花坛的周长是24,.(米).故选A.6. (2015年浙江台州4分)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是【 】A.8cm B.cm C.5.5cm D.1cm【答案】A.【考点】折叠问题;矩形的性质;勾股定理;实数的大小比较.【分析】将长为6cm,宽为5cm的长方形纸片折叠一次,折痕的长最长的是对角线.长为6cm,宽为5cm,对角线长(cm).8cmcm,这条折痕的长不可能是8cm.故选A.7. (2015年浙江台州4分)如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EGAD交CD于点G

6、,过点F作FHAB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为【 】A.6.5 B.6 C.5.5 D.5【答案】C.【考点】菱形的判定和性质;方程思想的应用.【分析】易知,四边形AEOF和四边形CGOH都是菱形,设AE=,CG=,在菱形ABCD中,AB=8,.四边形AEOF与四边形CGOH的周长之差为12,.,即AE的值为5.5. 故选C.8. (2015年浙江温州4分)如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,的中点分别是M,N,P,Q. 若MP+NQ=14,AC

7、+BC=18,则AB的长是【 】A. B. C. 13 D. 16【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用.【分析】如答图,连接OP、OQ,DE,FG,的中点分别是M,N,P,Q,点O、P、M三点共线,点O、Q、N三点共线.ACDE,BCFG是正方形,AE=CD=AC,BG=CF=BC.设AB=,则.点O、M分别是AB、ED的中点,OM是梯形ABDE的中位线.,即.同理,得.两式相加,得.MP+NQ=14,AC+BC=18,.故选C.1. (2015年浙江杭州4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,A=C=90,B=1

8、50,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD= 【答案】或.【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用. 【分析】四边形纸片ABCD中,A=C=90,B=150,C=30.如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:如答图1,剪痕BM、BN,过点N作NHBM于点H,易证四边形BMDN是菱形,且MBN=C=30.设BN=DN=,则NH=.根据题意,得,BN=DN=2,

9、NH=1.易证四边形BHNC是矩形,BC=NH=1. 在中,CN=.CD=.如答图2,剪痕AE、CE,过点B作BHCE于点H,易证四边形BAEC是菱形,且BCH =30.设BC=CE =,则BH=.根据题意,得,BC=CE =2, BH=1.在中,CH=,EH=.易证,即.综上所述,CD=或.2. (2015年浙江湖州4分)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推,若A1C1=2,且点A,D2, D3,D10都在同一直线上,则正方形A9C9C10D10的

10、边长是 【答案】.【考点】探索规律题(图形的变化);正方形的性质;相似三角形的判定和性质.【分析】如答图,设AD10与A1C1相交于点E,则,.设,AD1=1,A1C1=2,.易得,.设,则,即.同理可得,正方形A9C9C10D10的边长是.3. (2015年浙江金华4分)如图,在平面直角坐标系中,菱形OBCD的边OB在轴正半轴上,反比例函数的图象经过该菱形对角线的交点A,且与边BC交于点F. 若点D的坐标为(6,8),则点F的坐标是 【答案】.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.【分析】菱形OBCD的边OB在轴正半轴上

11、,点D的坐标为(6,8),.点B的坐标为(10,0),点C的坐标为(16,8).菱形的对角线的交点为点A,点A的坐标为(8,4).反比例函数的图象经过点A,.反比例函数为.设直线的解析式为,.直线的解析式为.联立.点F的坐标是.4. (2015年浙江丽水4分)如图,四边形ABCD与四边形AECF都是菱形,点E,F在BD上,已知BAD=120,EAF=30,则= .【答案】. 【考点】菱形的性质;等腰直角三角形和含30度角直角三角形的性质;特殊元素法的应用.【分析】如答图,过点E作EHAB于点H,四边形ABCD与四边形AECF都是菱形,BAD=120,EAF=30,ABE=30,BAE=45.不

12、妨设,在等腰中,;在中,.5. (2015年浙江宁波4分)命题“对角线相等的四边形是矩形”是 命题(填“真”或“假”)【答案】假.【考点】命题的真假判定;矩形的判定. 【分析】根据矩形的判定,对角线相等的平行四边形才是矩形,而对角线相等的四边形也可能是等腰梯形等,故命题“对角线相等的四边形是矩形”是假命题.6. (2015年浙江宁波4分)如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的O与BC边相切于点E,则O的半径为 w【答案】.【考点】矩形的性质;垂径定理;勾股定理;方程思想的应用.【分析】如答图,连接EO并延长交AD于点H,连接AO,四边形ABCD是矩形,O与BC边相切于点

13、E, EHBC,即EHAD. 根据垂径定理,AH=DH.AB=8,AD=12,AH=6,HE=8.设O的半径为,则AO=,.在中,由勾股定理得,解得.O的半径为.7. (2015年浙江绍兴5分) 在RtABC中,C=90,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB. 若PB=4,则PA的长为 【答案】3或.【考点】矩形的判定和性质;勾股定理;分类思想的应用.【分析】如答图,分两种情况:当点P与点A在BC同侧时,BACP1是矩形,P1A=BC=3;当点P与点A在BC异侧时,P2EAP1是矩形,P1A=.PA的长为3或.8. (2015年浙江台州5分)如图,正方形ABCD

14、的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 【答案】.【考点】面动旋转问题;正方形和正六边形的性质;数形结合思想的应用.【分析】如答图,当这个正六边形的中心与点O重合,两个对点刚好在正方形两边中点,这个六边形的边长最大,此时,这个六边形的边长为.当顶点E刚好在正方形对角线AC的AO一侧时,AE的值最小,最小值为9. (2015年浙江义乌4分)在RtABC中,C=90,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB. 若PB=4,

15、则PA的长为 【答案】3或.【考点】矩形的判定和性质;勾股定理;分类思想的应用.【分析】如答图,分两种情况:当点P与点A在BC同侧时,BACP1是矩形,P1A=BC=3;当点P与点A在BC异侧时,P2EAP1是矩形,P1A=.PA的长为3或.10. (2015年浙江义乌4分)在RtABC中,C=90,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB. 若PB=4,则PA的长为 【答案】3或.【考点】矩形的判定和性质;勾股定理;分类思想的应用.【分析】如答图,分两种情况:当点P与点A在BC同侧时,BACP1是矩形,P1A=BC=3;当点P与点A在BC异侧时,P2EAP1是矩形

16、,P1A=.PA的长为3或.11. (2015年浙江义乌4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(,).如图,若曲线与此正方形的边有交点,则的取值范围是【答案】.【考点】反比例函数的性质;正方形的性质;曲线上点的坐标与方程的关系;分类思想和数形结合思想的应用.【分析】根据题意,当点A在曲线上时,取得最大值;当点C在曲线上时,取得最小值.当点A在曲线上时,(舍去负值).当点C在曲线上时,易得C点的坐标为,(舍去负值).若曲线与正方形的边有ABCD交点,的取值范围是.1. (2015年浙江嘉兴8分)如图,正方形ABCD中,点E,F分别在AB,BC

17、上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与AED相等的角;(2)选择图中与AED相等的任意一个角,并加以证明.【答案】解:(1)与AED相等的角有.(2)选择:正方形ABCD中,又AF=DE,.【考点】开放型;正方形的性质;平行的性质;全等三角形的判定和性质.【分析】(1)观察图形,可得 结果.(2)答案不唯一,若选择,则由可得结论;若选择,则由正方形ABCD得到ABCD,从而得到结论;,若选择,则一方面,由可得,另一方面,由正方形ABCD得到ADBC,得到,进而可得结论2. (2015年浙江嘉兴14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等

18、邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;如图2,小红画了一个RtABC,其中ABC=90,AB=2,BC=1,并将RtABC沿B的平分线方向平移得到,连结. 小红要使平移后的四边形是“等邻边四边形”,应平移多少距离(即线段的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD中,AB=AD,BAD+BCD=90,AC,BD为对角线,.试探究BC,CD,BD的数量关系.【答案】解:(1)(答案不唯一).(2)

19、正确.理由如下:四边形的对角线互相平分,这个四边形是平行四边形.四边形是“等邻边四边形”,这个四边形有一组邻边相等.这个四边形是菱形.ABC=90,AB=2,BC=1,.将RtABC平移得到,i)如答图1,当时,;ii)如答图2,当时,;iii)如答图3,当时,延长交于点,则.平分,.设,则.在中,解得(不合题意,舍去).iv)如答图4,当时,同ii)方法,设,可得,即,解得(不合题意,舍去).综上所述,要使平移后的四边形是“等邻边四边形”,应平移2或或或的距离.(3)BC,CD,BD的数量关系为.如答图5,将绕点A旋转到.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似

20、三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用.【分析】(1)根据定义,添加或或或即可(答案不唯一).(2)根据定义,分,四种情况讨论即可.(3)由,可将绕点A旋转到,构成全等三角形:,从而得到,进而证明得到,通过角的转换,证明,根据勾股定理即可得出.3. (2015年浙江金华8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.【答案】解:(1)证明:DEAF ,AED=90.又四边形ABCD是矩形, A

21、DBC,B=90.DAE=AFB,AED=B=90.又AF=AD,ADEFAB(AAS).DE=AB.(2)BF=FC=1,AD=BC=BF+FC=2.又ADEFAB,AE=BF=1.在RtADE中,AE=AD. ADE=30.又DE=,【考点】矩形的性质;全等三角形的判定和性质;含30度角直角坐标三角形的性质;勾股定理;弧长的计算.【分析】(1)通过应用AAS证明ADEFAB即可证明DE=AB.(2)求出ADE和DE的长即可求得的长.4. (2015年浙江丽水10分)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MNCM交射线AD于点N.(1)当F为B

22、E中点时,求证:AM=CE;(2)若,求的值;(3)若,当为何值时,MNBE?【答案】解:(1)证明:F为BE中点,BF=EF.ABCD,MBF=CEF,BMF=ECF.BMFECF(AAS).MB=CE.AB=CD,CE=DE,MB=AM. AM=CE.(2)设MB=,ABCD,BMFECF. .MNMC,A=ABC=90,AMNBCM. ,即.(3)设MB=,由(2)可得.当MNBE时,CMBE.可证MBCBCE. ,即.当时,MNBE.【考点】探究型问题;矩形的性质;全等三角形的判定和性质;相似三角形的判定和性质. 【分析】(1)应用AAS证明BMFECF即可易得结论.(2)证明BMFE

23、CF和AMNBCM,应用相似三角形对应边成比例的性质即可得出结果.(3)应用(2)的一结结果,证明MBCBCE即可求得结果.5. (2015年浙江衢州12分)如图,在中,动点从点出发,沿射线方向以每秒5个单位的速度运动,动点从点出发,以相同的速度在线段上由向运动,当点运动到点时, 、两点同时停止运动. 以为边作正方形(按逆时针排序),以为边在上方作正方形.(1)求的值;(2)设点运动时间为,正方形的面积为,请探究是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当为何值时,正方形的某个顶点(点除外)落在正方形的边上,请直接写出的值【答案】解:(1)如答图1,过点作于点,解得,

24、.又根据勾股定理,得(2)存在.如答图2,过点作于点,经过时间,根据勾股定理,得,且在的取值范围内,存在最小值?若存在,这个最小值是.(3)当或或1或秒时,正方形的某个顶点(点除外)落在正方形的边上.【考点】双动点问题;勾股定理;锐角三角函数定义;二次函数最值的应用;分类思想的应用【分析】(1)作辅助线“过点作于点”构造直角三角形,根据已知求出和应用的长,即可根据正切函数定义求出(2)根据求得关于的二次函数,应用研究二次函数的最值原理求解即可(3)分四种情况讨论:当点在上时,如答图3,;当点在上时,如答图4,;当点在上(或点在上)时,如答图5,;当点在上时,如答图6,.6. (2015年浙江绍

25、兴12分)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛。如图3,在草坪RPCQ中,已知REPQ于点E,CFPQ于点F,求花坛RECF的面积.【答案】解:(1)设通道的宽是m,AM=m,AM:A

26、N=8:9,AN=m.,解得.答:通道的宽是1m.(2)四块相同草坪中的每一块有一条为8 m,若RP=8,则AB13,不合;若RQ=8,适合.纵向通道的宽为2m,横向通道的宽为2m,RP=6.REPQ,四边形RPCQ是长方形,PQ=10.RE=4.8.,即,解得PE=3.6.同理可得QF=3.6.EF=2.8.,即花坛RECF的面积为13.44 m2.【考点】二元一次方程组的应用(几何问题);矩形和平行四边形的性质;勾股定理.【分析】(1)方程(组)的应用解题关键是找出等量关系,列出方程(组)求解. 本题设通道的宽是m,AM=m,AN=m,等量关系为:长AD为18m,宽AB为13m.(2)求出

27、EF和RE的长,即可求出花坛RECF的面积.7. (2015年浙江绍兴12分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角DAG=,其中0180,连结DF,BF,如图.(1)若=0,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【答案】解:(1)证明:如答图1,正方形ABCD和正方形AEFG中,GF=EF,AG=AE,AD=AB,DG=BE.又DGF=BEF=90,DGFBEF(S

28、AS).DF=BF.(2)反例图形如答图2:(3)不唯一,如点F在正方形ABCD内,或180.【考点】开放型;正方形的性质;原命题和逆命题;真命题和假命题【分析】(1)由正方形的性质,通过SAS证明DGFBEF,从而得到结论.(2)(1)中命题的逆命题是:若DF=BF,则=0,它是假命题的反例是=180的情况.(3)限制点F范围或的范围即可.8. (2015年浙江温州14分)如图,点A和动点P在直线上,点P关于点A的对称点为Q,以AQ为边作RtABQ,使BAQ=90,AQ:AB=3:4,作ABQ的外接圆O. 点C在点P右侧,PC=4,过点C作直线,过点O作OD于点D,交AB右侧的圆弧于点E。在

29、射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF,设AQ=(1)用关于的代数式表示BQ,DF;(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长;(3)在点P的整个运动过程中,当AP为何值时,矩形DEGF是正方形?作直线BG交O于另一点N,若BN的弦心距为1,求AP的长(直接写出答案)【答案】解:(1)在RtABQ中,AQ:AB=3:4,AQ=,AB=.BQ=.又OD,OD.OB=OQ,AH=BH=AB=.FD=CD=.(2)AP=AQ=,PC=4,CQ=.如答图1,过点O作OMAQ于点M,OMAB.O是ABQ的外接圆,BAQ=90,点O是BQ的中点.QM=AM

30、=.OD=MC=.OE=BQ=.ED=.解得(舍去).AP=.(3)若矩形DEGF是正方形,则ED=FD. 当点C在点Q的右侧时,i)如答图1,点P在点A的右侧时,由解得,AP=.ii)点P在点A的左侧时,(I)如答图2,时,ED=,FD=,由解得,AP=.(II)如答图3,时,ED=, DF=,由解得(舍去). 当点C在点Q的左侧时,即,如答图4,DE=, DF=,由解得. AP=.综上所述,当AP为12或或3时,矩形DEGF是正方形.AP的长为或【考点】单动点和中心对称问题;列代数式;平行的判定和性质;圆周角定理;矩形的性质;正方形的判定;等腰直角三角形的判定和性质方程思想、分类思想和数形

31、结合思想的应用.【分析】(1)根据AQ:AB=3:4和平行的性质求解.(2)把DF,DE用的代数式表示,即可由矩形DEGF的面积等于90列议程求解.(3)根据ED=FD时矩形DEGF是正方形,分点C在点Q的右侧,点C在点Q的左侧的情况分类讨论,其中点C在点Q的右侧又分点P在点A的右侧,点P在点A的左侧(再分和)讨论.如答图5、6,连接NQ,由点N到BN的弦心距为1得NQ=2.如答图5,当点N在AB的左侧时,过点B作BMEG于点M,GM=,BM=,GBM=45.BMAQ.AI=AB=.IQ=.NQ=,解得.AP=.如答图6,当点N在AB的右侧时,过点B作BJGE于点J,GJ=,BJ=,tanGB

32、J=.AI=.QI=.NQ=,解得.AP=.综上所述,AP的长为或.9. (2015年浙江义乌10分)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛。如图3,在草坪RPCQ中,已知REPQ于点E

33、,CFPQ于点F,求花坛RECF的面积.【答案】解:(1)设通道的宽是m,AM=m,AM:AN=8:9,AN=m.,解得.答:通道的宽是1m.(2)四块相同草坪中的每一块有一条为8 m,若RP=8,则AB13,不合;若RQ=8,适合.纵向通道的宽为2m,横向通道的宽为2m,RP=6.REPQ,四边形RPCQ是长方形,PQ=10.RE=4.8.,即,解得PE=3.6.同理可得QF=3.6.EF=2.8.,即花坛RECF的面积为13.44 m2.【考点】二元一次方程组的应用(几何问题);矩形和平行四边形的性质;勾股定理.【分析】(1)方程(组)的应用解题关键是找出等量关系,列出方程(组)求解. 本

34、题设通道的宽是m,AM=m,AN=m,等量关系为:长AD为18m,宽AB为13m.(2)求出EF和RE的长,即可求出花坛RECF的面积.10. (2015年浙江义乌10分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角DAG=,其中0180,连结DF,BF,如图.(1)若=0,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【答案】解:(1)证明:如答图1,正方形ABCD和正方形AEF

35、G中,GF=EF,AG=AE,AD=AB,DG=BE.又DGF=BEF=90,DGFBEF(SAS).DF=BF.(2)反例图形如答图2:(3)不唯一,如点F在正方形ABCD内,或180.【考点】开放型;正方形的性质;原命题和逆命题;真命题和假命题【分析】(1)由正方形的性质,通过SAS证明DGFBEF,从而得到结论.(2)(1)中命题的逆命题是:若DF=BF,则=0,它是假命题的反例是=180的情况.(3)限制点F范围或的范围即可.11. (2015年浙江义乌12分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P、点Q分别是边BC、边AB上的点,

36、连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,求点B的坐标;若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OCAC,过点B1作B1F轴,与对角线AC、边OC分别交于点E、点F. 若B1E:B1F=1:3,点B1的横坐标为,求点B1的纵坐标,并直接写出的取值范围.【答案】解:(1)四边形OABC为矩形,OA=4,OC=2,点B(4,2).如答图1,过点P作PDOA于点D,BQ:BP=1:2,点B1是点B关于PQ的对称点,PDB1=PB1Q=B1AQ=90.PB1D=B1QA.PB1DB1QA.B1A=

37、1.OB1=3,即B1(3,0).(2)四边形OABC为平行四边形,OA=4,OC=2,且OCAC,OAC=30.点C.B1E:B1F=1:3,点B1不与点E、F重合,也不在线段EF的延长线上.当点B1在线段FE的延长线上时,如答图2,延长B1F与轴交于点G,点B1的横坐标为,B1F轴,B1E:B1F=1:3,B1G=.设OG=,则GF=,OF=.CF=.FE=,B1E=.B1G= B1E+EF+FG=.即点B1的纵坐标为,的取值范围为.当点B1在线段EF(点E、F除外)上时,如答图3,延长B1F与轴交于点G,点B1的横坐标为,B1F轴,B1E:B1F=1:3,B1G=.设OG=,则GF=,O

38、F=CF=.FE=,B1F=FE=.B1G= B1F +FG=.即点B1的纵坐标为,的取值范围为.【考点】轴对称问题;矩形和平行四边形的性质;轴对称的性质;相似三角形的判定和性质;含30度直角三角形的性质;点的坐标;分类思想的应用.【分析】(1)直接根据矩形的性质得到点B的坐标.过点P作PDOA于点D,证明PB1DB1QA,得到B1A的长,从而得到OB1的长,进而得到点B1的坐标.(2)分点B1在线段FE的延长线上和点B1在线段EF(点E、F除外)上两种情况讨论即可.12. (2015年浙江舟山6分)如图,正方形ABCD中,点E,F分别在AB,BC上,AF=DE,AF和DE相交于点G.(1)观

39、察图形,写出图中所有与AED相等的角;(2)选择图中与AED相等的任意一个角,并加以证明.【答案】解:(1)与AED相等的角有.(2)选择:正方形ABCD中,又AF=DE,.【考点】开放型;正方形的性质;平行的性质;全等三角形的判定和性质.【分析】(1)观察图形,可得 结果.(2)答案不唯一,若选择,则由可得结论;若选择,则由正方形ABCD得到ABCD,从而得到结论;,若选择,则一方面,由可得,另一方面,由正方形ABCD得到ADBC,得到,进而可得结论13. (2015年浙江舟山12分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边

40、形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;如图2,小红画了一个RtABC,其中ABC=90,AB=2,BC=1,并将RtABC沿B的平分线方向平移得到,连结. 小红要使平移后的四边形是“等邻边四边形”,应平移多少距离(即线段的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD中,AB=AD,BAD+BCD=90,AC,BD为对角线,.试探究BC,CD,BD的数量关系.【答案】解:(1)(答案不唯一).(2)正确.理由如下:四边形的对角线互相平分,这个

41、四边形是平行四边形.四边形是“等邻边四边形”,这个四边形有一组邻边相等.这个四边形是菱形.ABC=90,AB=2,BC=1,.将RtABC平移得到,i)如答图1,当时,;ii)如答图2,当时,;iii)如答图3,当时,延长交于点,则.平分,.设,则.在中,解得(不合题意,舍去).iv)如答图4,当时,同ii)方法,设,可得,即,解得(不合题意,舍去).综上所述,要使平移后的四边形是“等邻边四边形”,应平移2或或或的距离.(3)BC,CD,BD的数量关系为.如答图5,将绕点A旋转到.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用.【分析】(1)根据定义,添加或或或即可(答案不唯一).(2)根据定义,分,四种情况讨论即可.(3)由,可将绕点A旋转到,构成全等三角形:,从而得到,进而证明得到,通过角的转换,证明,根据勾股定理即可得出.【精品文档】第 24 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁