《难点详解北师大版九年级数学下册第一章直角三角形的边角关系章节测评练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版九年级数学下册第一章直角三角形的边角关系章节测评练习题(名师精选).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第一章直角三角形的边角关系章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为( )ABCD2、如图,飞机于空中A
2、处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为( )AatanBCDcos3、如图,等腰RtABC中,C90,AC5,D是AC上一点,若tanDBA,则AD()A1B2CD24、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值是( )ABCD5、如图,ABC中,ABAC2,B30,ABC绕点A逆时针旋转(0120)得到ABC,BC与BC、AC分别交于点D、点E,设CD+DEx,AEC的面积为y,则y与x的函数图象大致为()ABCD6、在RtABC中,C90,BC3,AC4,那么cosB的值等于()ABCD7、计算的值
3、等于( )AB1C3D8、如图,的顶点都是正方形网格中的格点,则( )ABCD9、如图,正方形ABCD中,AB6,E为AB的中点,将ADE沿DE翻折得到FDE,延长EF交BC于G,FHBC,垂足为H,连接BF、DG以下结论:BFED;DFGDCG;FHBEAD;tanGEB;其中正确的个数是( )A4B3C2D110、如图,在四边形ABCD中,O为对角线BD的中点,则等于( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、规定: ,据此判断下列等式成立的是:_(写出所有正确的序号)cos(60) ,sin75,2、在矩形ABCD中,BC3AB,点P在直线BC上
4、,且PCAB,则APB的正切值为 _3、如图,在A处测得点P在北偏东60方向上,在B处测得点P在北偏东30方向上,若AP6千米,则A,B两点的距离为 _千米4、如图,在RtABC中,C90,BC2,AC2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把BDE翻折到BDE的位置,BD交AB于点F若ABF为直角三角形,则AE的长为_或_5、如图,在中,点E在线段上,D是线段上一点,连接,将四边形沿直线翻折,得到四边形,当点G恰好落在上时,折痕的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,等腰RtABC中,ABAC,D为线段BC上的一个动点,E为线段AB上的一个动点,使得
5、CDBE连接DE,以D点为中心,将线段DE顺时针旋转90得到线段DF,连接线段EF,过点D作射线DRBC交射线BA于点R,连接DR,RF(1)依题意补全图形;(2)求证:BDERDF;(3)若ABAC2,P为射线BA上一点,连接PF,请写出一个BP的值,使得对于任意的点D,总有BPF为定值,并证明 2、如图,在ABC中,B30,AB4,ADBC于点D且tanCAD,求BC的长3、如图,平地上两栋建筑物AB和CD相距30m,在建筑物AB的顶部测得建筑物CD底部的俯角为26.6,测得建筑物CD顶部的仰角为45求建筑物CD的高度(参考数据:sin26.60.45,cos26.60.89,tan26.
6、60.50)4、在中,为锐角且(1)求的度数;(2)求的正切值5、居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin350.574,cos350.819,tan350.700)题目测量城楼顶端到地面的高度测量目标示意图相关数据BM=16m, BC=13m,ABC=35,ACE=45-参考答案-一、单选题1、D【分析】由AFECFD90得,根据折叠的定义可以得到CBCF,
7、则,即可求出的值,继而可得出答案【详解】AFECFD90,由折叠可知,CBCF,矩形ABCD中,ABCD,故选:D【点睛】本题考查了折叠变换的性质及锐角三角函数的定义,解题关键是得到CBCF2、C【分析】根据题意可知,根据,即可求得【详解】解:飞机于空中A处测得目标B处的俯角为,AC为a,故选C【点睛】本题考查了正弦的应用,俯角的意义,掌握正弦的概念是解题的关键3、B【分析】过点D作,根据已知正切的定义得到,再根据等腰直角三角形的性质得到,再根据勾股定理计算即可;【详解】过点D作,tanDBA,是等腰直角三角形,AC5,在等腰直角中,由勾股定理得故选B【点睛】本题主要考查了解直角三角形,等腰直
8、角三角形,勾股定理,准确计算是解题的关键4、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k2133故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标5、B【分析】先证ABFACE(ASA),再证BFDCED(AAS),得出DE+DC=DE+DB=BE=x,利
9、用锐角三角函数求出,AG=ACsin30=1,根据三角形面积列出函数解析式是一次函数,即可得出结论【详解】解:设BC与AB交于F,ABC绕点A逆时针旋转(0120)得到ABC,BAF=CAE=,AB=AC=AB=AC,B=C=B=C=30,在ABF和ACE中,ABFACE(ASA),AF=AE,AB=AC,BF=AB-AF=AC-AE=CE,在BFD和CED中,BFDCED(AAS),BD=CD,FD=ED,DE+DC=DE+DB=BE=x,过点A作AGBC于G,AB=AC,BG=CG,AC=2,cosC=,AG=ACsin30=1EC=是一次函数,当x=0时,故选择B【点睛】本题考查等腰三角
10、形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键6、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90,BC3,AC4,cosB故选:D【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键7、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键8、D【分析】根据题意和图形,可以得到AC、BC和AB的长,然后根据等面积法可以求得CD的长,从而可以得
11、到的值【详解】解:作CDAB,交AB于点D,由图可得,AC,BC2,AB,解得,CD,sinBAC,故选:D【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答9、A【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可【详解】解:正方形ABCD中,AB=6,E为AB的中点AD=DC=BC=AB=6,AE=BE=3,A=C=ABC=90ADE沿DE翻折得到FDEAED=FED,AD=FD=6,AE=EF=3,A=DFE=90,BE=EF=3,DFG=C=90,EBF=EFB,AED+FED=EBF+EFB,DEF=EFB,BFED,故结论正确;AD=DF=D
12、C=6,DFG=C=90,DG=DG,RtDFGRtDCG,结论正确;FHBC,ABC=90ABFH,FHB=A=90EBF=BFH=AED,FHBEAD,结论正确;RtDFGRtDCG,FG=CG,设FG=CG=x,则BG=6-x,EG=3+x,在RtBEG中,由勾股定理得:32+(6-x)2=(3+x)2,解得:x=2,BG=4,tanGEB=,故结论正确故选:A【点睛】本题考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强10、A【分析】先根据平行线的性质和直角三角形斜边上的中线等于斜边的一半求出BD,再根据勾股定
13、理的逆定理判断出BDC=90,由正切定义求解即可【详解】解:ADBC,ABC=90,BAD=90,O为对角线BD的中点,OA=2,BD=2OA=4,BC=5,CD=3,BD2+CD2=BC2,BDC=90,tanDCB= =,故选:A【点睛】本题考查平行线的性质、直角三角形的斜边中线性质、勾股定理的逆定理、正切,熟练掌握勾股定理的逆定理是解答的关键二、填空题1、【分析】根据规定运算法则可得,由此可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可得【详解】解:,等式不成立;,等式成立;,等式成立;,等式成立;综上,等式成立的是,故答案为:【点睛】本题考查
14、了正弦和余弦,掌握理解规定的三角函数运算法则是解题关键2、或【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形ABCD是矩形,tanAPB=;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=综上所述APB的正切值为或故答案为:或【点睛】本题主要考查矩形性质和三角函数的定义,注意分类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系3、6【分析】证明ABPB,在RtPAC中,求出PC3千米,在RtPBC中,解
15、直角三角形可求出PB的长,则可得出答案【详解】解:由题意知,PAB30,PBC60,APBPBCPAB603030,PABAPB,ABPB,在RtPAC中,AP6千米,PCPA3千米,在RtPBC中,sinPBC,PB6千米AB6千米故答案为:6【点睛】本题考查了解直角三角形应用题,方向角:指正北或指正南方向线与目标方向线所成的小于90的角叫做方向角注意在描述方向角时,一般应先说北或南,再说偏西或偏东多少度,而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45方向上时,又常常说成东南、东北、西南、西北方向4、3; 【分析】分两种情况讨论:当BDAE时,ABF为直角三角形;当DBAB时
16、,ABF为直角三角形.【详解】解:当BDAE时,ABF为直角三角形,如下图:根据题意,BE=BE,BD=BD=BC=,B=EBF,在RtABC中,C=90,BC=2,AC=2,AB=4,B=EBF =30,在RtBDF中,B=30,DF=BD=,BF=BD-DF=-=,在RtBEF中,EBF =30,EF=BE,BF=EF,即=EF,EF=,则BE=1,AE=AB-BE=4-1=3.当DBAB时,ABF为直角三角形,如下图:连接AD,过A作ANEB,交EB的延长线于N,根据题意,BE=BE,BD=CD=BD=BC=,DBE=EBF,在RtABC中,C=90,BC=2,AC=2,AB=4,DBE
17、=EBF =30,ABF=90,ABE=ABF+EBF=120,RtABN中,ABN=60,BAN=30,BN=AB,在RtABD和RtACD中,RtABDRtACD(HL),AB=AC=2,BN=1,AN=,设AE=x,则BE= BE=4-x,在RtAEN中,()2+(4-x+1)2=x2x=综上,AE的长为3或,故答案为:3或.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了含30度的直角三角形三边的关系和勾股定理5、【分析】过点D作DHBC,可以推出,AHD=ACB=90,再由得到,由折叠的性质可得:,GF
18、E=BCE=90, 从而求出,设,则,再由勾股定理得到,则,由此求出,然后求出,最后利用勾股定理求解即可【详解】解:如图所示,过点D作DHBC,AHD=ACB=90,由折叠的性质可得:,GFE=BCE=90, ,设,则,解得,故答案为:【点睛】本题主要考查了平行线分线段成比例,折叠的性质,勾股定理,解直角三角形,解题的关键在于能正确作出辅助线,构造直角三角形进行求解三、解答题1、(1)见解析;(2)见解析;(3)当,使得对于任意的点D,总有BPF为定值,证明见解析【分析】(1)根据题意作出图形连接;(2)根据可得,证明是等腰直角三角,可得,根据旋转的性质可得,进而根据边角边即可证明BDERDF
19、;(3)当时,设,则,分别求得,根据即可求解【详解】(1)如图,(2)DRBC将线段DE顺时针旋转90得到线段DF,即是等腰直角三角形是等腰直角三角形BDERDF;(2)如图,当时,使得对于任意的点D,总有BPF为定值,证明如下,是等腰直角三角形,设,则,BDERDF,,是等腰直角三角形,是等腰直角三角形,BDERDF,即为定值【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质,正切的定义,旋转的性质,掌握以上知识是解题的关键2、【分析】在中求出,在中,由求出,即可得出的长【详解】于点D,为直角三角形,在中,在中,【点睛】本题考查直角三角形的性质,勾股定理以及解直角三角形,掌握直角三角形
20、中,角所对的边是斜边的一半是解题的关键3、建筑物CD的高度约为45m【分析】如图所示,过点A作AECD于E,先证明AE=CE,然后证明四边形ABDE是矩形,则AE=BD=30m,CE=AE=30m,由此即可得到答案【详解】解:如图所示,过点A作AECD于E,AEC=AED=90,CAE=45,C=45,C=CAE,AE=CE,ABBD,CDBD,ABD=BDE=90,四边形ABDE是矩形,AE=BD=30m,CE=AE=30m,CD=CE+DE=45m,答:建筑物CD的高度约为45m【点睛】本题主要考查了矩形的性质与判定,等腰直角三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助
21、线求解4、(1)60,(2)3【分析】(1)根据特殊角三角函数值直接求解即可;(2)作ADBC于D,求出AD3,CD1,由三角函数定义即可得出答案【详解】解:(1)B为锐角且,B60;(2)作ADBC于D,如图所示:,BDAB3,AD,BC4,BD3,CDBCBD1,tanC3【点睛】本题考查了解直角三角形、特殊锐角的三角函数值、三角函数定义等知识;熟练掌握直角三角形的性质和特殊锐角的三角函数值是解题的关键5、城楼顶端距地面约为31.9m【分析】根据题意,设AE为x m,在RtACE中,tanABE=,进而列出方程,求得,根据 AD=AE+ED即可求解【详解】解:根据题意,得BM=ED=16m,AEC=90设AE为x m,在RtACE中,ACE=45,CAE=45,AE=CE 在RtABE中,tanABE=, 又ABE=35,tan35= 即解得x30.3AD=AE+ED30.3+1631.9(m) 答:城楼顶端距地面约为31.9m【点睛】本题考查了解直角三角形的应用,数形结合是解题的关键