《难点解析北师大版八年级数学下册第六章平行四边形专题训练练习题(含详解).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版八年级数学下册第六章平行四边形专题训练练习题(含详解).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则C
2、OF的度数是()A74B76C84D862、如图,已知正方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC上从B向C移动而G不动时,下列结论成立的是( )A线段EF的长逐渐增大B线段EF的长逐渐减小C线段EF的长不改变D线段EF的长不能确定3、如图,在平行四边形 ABCD 中,BC2AB8,连接 BD,分别以点B,D为圆心,大于BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为( )AB6C7D44、n 边形的每个外角都为 15,则边数 n 为( )A20B22C24D265、正八边形的外角
3、和为( )ABCD6、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A三角形B四边形C五边形D六边形7、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D248、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45,OAOC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)9、已知正多边形的一个外角等于40,则这个正多边形的内角和的度数为_A360B1260C1120D116010、一个正多边形的外角与相邻的内角的度数之比为1:3,则这个多边形的边数是( )A8B9C
4、6D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果一个多边形的内角和为1440,则这个多边形的边数为_;正八边形的每个内角为_度2、如果一个多边形的内角和为1260,那么从这个多边形的一个顶点可以连_条对角线3、在平行四边形ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF=2,则BC的长为_4、如图,平面直角坐标系中,有,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为_5、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _三、
5、解答题(5小题,每小题10分,共计50分)1、已知,在中,E是AD边的中点,连接BE(1)如图,若BC=2,求AE的长;(2)如图,延长BE交CD的延长线于点F,求证:FD=AB2、如图,在等腰直角三角形ABC和ADE中,ACAB,ADAE,连接BD,点M、N分别是BD,BC的中点,连接MN(1)如图1,当顶点D在边AC上时,请直接写出线段BE与线段MN的数量关系是 ,位置关系是 (2)当ADE绕点A旋转时,连接BE,上述结论是否依然成立,若成立,请就图2情况给出证明;若不成立,请说明理由(3)当AC8时,在ADE绕点A旋转过程中,以D,E,M,N为顶点可以组成平行四边形,请直接写出AD的长3
6、、如图,在中,为内部的一动点(不在边上),连接,将线段绕点逆时针旋转60,使点到达点的位置;将线段绕点顺时针旋转60,使点到达点的位置,连接,(1)求证:;(2)当取得最小值时,求证:(3)如图,分别是,的中点,连接,在点运动的过程中,请判断的大小是否为定值若是,求出其度数;若不是,请说明理由4、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_5、探究与发现:(1)如图(1),在ADC中,DP、CP分别平分ADC和ACD若,则
7、若,用含有的式子表示为 (2)如图(2),在四边形ABCD中,DP、CP分别平分ADC和BCD,试探究P与A+B的数量关系,并说明理由(3)如图(3),在六边形ABCDEF中,DP、CP分别平分EDC和BCD,请直接写出P与A+B+E+F的数量关系: -参考答案-一、单选题1、C【分析】利用正多边形的性质求出EOF,BOC,BOE即可解决问题【详解】解:由题意得:EOF108,BOC120,OEB72,OBE60,BOE180726048,COF3601084812084,故选:【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识2、C【分析】连接AG,根据三角形中位
8、线定理可得EF= AG,因此线段EF的长不变【详解】解:如图,连接AG,E、F分别是AP、GP的中点, EF为APG的中位线,EF= AG,为定值线段EF的长不改变故选C【点睛】本题考查了三角形的中位线定理,只要三角形的边AG不变,则对应的中位线的长度就不变3、A【分析】连接DH,根据作图过程可得EF是线段BD的垂直平分线,证明DHC是等边三角形,然后证明AHD=90,根据勾股定理可得AH的长【详解】解:如图,连接DH,根据作图过程可知:EF是线段BD的垂直平分线,DH=BH,点H为BC的中点,BH=CH,BC=2CH,DH=CH,在ABCD中,AB=DC,AD=BC=2AB=8,DH=CH=
9、CD=4,DHC是等边三角形,C=CDH=DHC=60,在ABCD中,BAD=C=60,ADBC,DAH=BHA,AB=BH,BAH=BHA,BAH=DAH=30,AHD=90,AH=故选:A【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,等边三角形的判定和性质,平行四边形的性质,勾股定理等知识点,解决本题的关键是掌握线段垂直平分线的作法4、C【分析】根据多边形的外角和等于360度得到15n360,然后解方程即可【详解】解:n边形的每个外角都为15,15n360,n24故选C【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键5、A【分析】根据多边形的外角和都是即
10、可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键6、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形故选:A【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理7、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周
11、长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质8、C【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用
12、相关性质进行求解9、B【分析】根据正多边形的内角和计算即可;【详解】正n边形的每个外角相等,且其和是,;故选B【点睛】本题主要考查了正多边形的外角和与内角和,准确计算是解题的关键10、A【分析】设每个内角与它相邻的外角的度数分别为3x、x,根据邻补角的定义得到x3x180,解出x45,然后根据多边形的外角和为360即可计算出多边形的边数【详解】解:设每个内角与它相邻的外角的度数分别为3x、x,x3x180,x45,故这个多边形的边数8故选:A【点睛】本题考查了多边形的外角定理:多边形的外角和为360也考查了邻补角的定义二、填空题1、10 135 【分析】n边形的内角和是(n-2)180,代入就
13、得到一个关于n的方程,就可以解得边数n当n=8时,利用即可得到正八边形的每个内角的度数【详解】解:根据题意,得:(n-2)180=1440,解得:n=10所以此多边形的边数为10;正八边形的每个内角为135故答案为:10;135【点睛】本题考查了多边形的内角和公式,已知多边形的内角和求边数,可以转化为解方程的问题解决2、6【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数【详解】解:设此多边形的边数为n,由题意得:(n-2)180=1260,解得;n=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为:6【点睛】此题主要考查了多边形的内角和计算公式求多边形
14、的边数,关键是掌握多边形的内角和公式180(n-2)3、10或14或10【分析】利用BF平分ABC, CE平分BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可【详解】解: 四边形ABCD是平行四边形,BF平分ABC, CE平分BCD, , 由等角对等边可知:, 情况1:当与相交时,如下图所示:, ,情况2:当与不相交时,如下图所示:,故答案为:10或14【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况4、(9,4)、(-3,4
15、)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标【详解】平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBO,D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4)故答案为:(9,4)、(-3,4)、(3,-4)【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等5、80【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得AD
16、EB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键三、解答题1、(1)AE=1;(2)见解析【分析】(1)根据平行四边形对边相等求解即可;(2)用“AAS”ABEDFE即可【详解】(1)解:四边形ABCD是平行四边形,BC=AD=2,E是AD边的中点,AE=1,(2)证明:E为AD中点,AE=DE,四边形ABCD是平行四边形,BACD,ABE=FBEA=F
17、ED,ABEDFE(AAS)FD=AB.【点睛】本题考查了平行四边形的性质和全等三角形的判定与性质,解题关键是熟练运用平行四边形的性质和全等三角形的判定进行证明推理2、(1)MN=BE;MNBE ;(2)成立,理由见解析;(3)或【分析】(1)延长交于点,根据三角形的中位线定理证明,再由平行线的性质证明,则;(2)(1)中的结论依然成立,连接,由等腰直角三角形的性质推出相应的线段相等和角相等,证明,先证明,再证明;由三角形的中位线定理证明;(3)以,为顶点的四边形为平行四边形分两种情况,即在的内部、都在的外部,此时、三点在同一条直线上,且,再根据,得到直角三角形,由勾股定理列方程求的长【详解】
18、解:(1)如图1,延长交于点,、分别是、的中点,且,;故答案为:,(2)成立,理由如下:如图2,连接并延长交于点,延长交于点,点、分别是、的中点,;,;(3)如图3,在内部,在的外部,且四边形是平行四边形,由(2)得,四边形是平行四边形,、三点在同一条直线上,由得,解得;如图4,、都在的外部,且四边形是平行四边形,设交于点,、分别为、的中点,四边形是平行四边形,点在上,、分别是、的中点,由得,解得,综上所述,的长为或【点睛】本题主要考查平行四边形的性质、等腰直角三角形的性质、三角形的中位线、勾股定理及二次根式的运算,熟练掌握平行四边形的性质、等腰直角三角形的性质、三角形的中位线、勾股定理及二次
19、根式的运算是解题的关键3、(1)见详解;(2)见详解;(3),理由见详解【分析】(1)由旋转知,、,故由证出全等即可;(2)由题意可知为等边三角形得,再由、共线时最小,最后,即证;(3)由中位线定理知道,由得,即,再设,则,得,得【详解】(1)证明:,在与中,;(2)证明:,为等边三角形,即,、共线时最小,;(3)的大小是为定值,理由:如图,连接,分别是,的中点,且,为等边三角形,设,则,【点睛】本题是三角形旋转变换综合题,考查了全等的判定与性质,两点之间,线段最短,勾股定理,等边三角形的判定与性质,平行线的判定,中位线定理,两点之间,线段最短求线段和最小值、用好全等三角形性质导角是证明平行及
20、角度不变的关键4、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,的周长为2(AB+BC)=32, , ,由(1)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本
21、题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键5、(1)125P90;(2)P(AB)(3)P(ABEF)180【分析】(1)根据角平分线的定义可得:CDPADC,DCPACD,根据三角形内角和为180可得P与A的数量关系;同的方法即可求解;(2)根据角平分线的定义可得:CDPADC,DCPBCD,根据四边形内角和为360,可得BCDADC360(AB),再根据三角形内角和为180,可得P与AB的数量关系;(3)根据角平分线的定义可得:CDPADC,DCPBCD,根据六边形内角和为720,可得BCDEDC720(ABE
22、F),再根据三角形内角和为180,可得P与AB的数量关系【详解】解:(1)DP、CP分别平分ADC和ACD,CDPADC,DCPACDAADCACD180ADCACD180APPDCPCD180P180(PDCPCD)180 (ADCACD)P180(180A)90A=9070=125故答案为:125;DP、CP分别平分ADC和ACD,CDPADC,DCPACDAADCACD180ADCACD180APPDCPCD180P180(PDCPCD)180 (ADCACD)P180(180A)90A=90故答案为:P90;(2)P(AB)理由如下:DP、CP分别平分ADC和BCD,CDPADC,DCPBCDABBCDADC360BCDADC360(AB)PPDCPCD180P180(PDCPCD)180(ADCBCD)P180360(AB)(AB)(3)DP、CP分别平分EDC和BCDPDCEDC,PCDBCDABEFBCDEDC720BCDEDC720(ABEF)PPDCPCD180P180(PDCPCD)180(EDCBCD)P180 720(ABEF)P(ABEF)180故答案为:P(ABEF)180【点睛】本题考查了四边形综合题,多边形的内角和,角平分线的性质,利用多边形的内角和表示角的数量关系是本题的关键