《难点详解北师大版八年级数学下册第六章平行四边形专题训练练习题(含详解).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版八年级数学下册第六章平行四边形专题训练练习题(含详解).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 A
2、BCD的面积为( ) A24B32C40D482、小张在操场从原地右转40前行至十米的地方,再右转40前行十米处,继续此规则前行,问小张第一次回到原地时,共走了( )米A70米B80米C90米D100米3、如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD4、四边形中,如果,则的度数是( )A110B100C90D305、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )
3、ABCD6、若一个正多边形每个外角都是36,则这个正多边形的边数为()A8B9C10D117、平行四边形中,则的度数是( )ABCD8、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14409、已知一个多边形的外角都等于,那么这个多边形的边数为( )A6B7C8D910、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大360D内角和与外角和相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在四边形ABCD中,若AB/CD,BC_AD,则四边形ABCD为平行四边形2、
4、如图,1+2+3+4=290,则5=_3、如图,已知正五边形ABCDE中,点F是BC的中点,P是线段EF上的动点,连接AP,BP,当AP+BP的值最小时,BPF的度数为_4、一个多边形的每个外角都等于40,则它的内角和是_5、一个多边形的每一个外角都等于36,则该多边形的内角和等于_度三、解答题(5小题,每小题10分,共计50分)1、(教材呈现)如图是华师版九年级上册数学教材第77页的部分内容(定理证明)(1)请根据教材内容,结合图,写出证明过程(定理应用)(2)如图,四边形中,、分别为、的中点,边、延长线交于点,则的度数是_(3)如图,矩形中,点在边上,且将线段绕点旋转一定的角度,得到线段,
5、是线段的中点,直接写出旋转过程中线段长的最大值和最小值2、如图,在正五边形ABCDE中,DFABF为垂足(1)求CDF的度数;(2)求证:AFBF3、已知MNBF,ABDE,ACDF(1)如图1,求证:ABCADE;(2)如图2,点G是DE上一点,连接AG,若ACBF,CAG+CEG180,点E到AD的距离与线段AG长度之比为5:4,AD20,求DE的长4、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长5、(1)四边形ABCD中,A140,D80如图1,若BC,则C_;如图2,若ABC的平分线BE交DC于点E,
6、且,则_;如图3,若ABC和BCD的平分线相交于点E,则BEC_;(2)如图3,当,时,若ABC和BCD的平分线交于点E,BEC与,之间的数量关系为_;(3)如图4,在五边形ABCDE中,ABE300,CP,DP分别平分BCD和EDC,求P的度数-参考答案-一、单选题1、B【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键2、C【分析】先画出图形求
7、出转的次数,由此确定前行的次数是9次,再根据乘法计算即可。【详解】解:如图,小张一共转了次,即前行了9次十米,小张第一次回到原地时,共走了米,故选:C【点睛】此题考查多边形的外角和公式,利用多边形的外角和求多边形的边数,熟记多边形的外角和是解题的关键3、B【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,由已知及三角形内角和可分别计算出DFE及AEF,从而可判断
8、正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD=2DCF,故正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90, FM=EF,FC=FE,ECF=CEF,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF , 故错误; 设FEC=x,则FCE=x,DCF=DFC=9
9、0x,EFC=1802x,EFD=90x+1802x=2703x,AEF=90x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点4、C【分析】根据四边形内角和是360进行求解即可【详解】解:四边形的内角和是360,故选:C【点睛】本题考查四边形的内角和,是基础考点,难度较易,掌握相关知识是解题关键5、B【分析】过点A作ABC的高,设为x,过点E作EFC的高为,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为
10、即可求解【详解】解:过点A作ABC的高,设为x,过点E作EFC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,AD为平分线,DM=DN,即: ,故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出6、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360,那么边数n=360一个外角的度数【详解】解:这个正多边形的边数为n,正n边形每个外角都是36,n=36036=10故选C【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键7、B【分析】根据平行四边形对角相等,即可求出的度数
11、【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质8、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.9、D【分析】根据多边形外角公式,代入角度求出n即可【详解】外角故多边形边数为9故选D【点睛】本题考查多边形外角公式,掌握该公式是本题解题关键10、D【分析】直接利用多边形
12、内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360,故本选项表述错误;B四边形的内角和与外角和相等,都等于360,故本选项表述错误;C六四边形的内角和与外角和相等,都等于360,故本选项表述错误;D四边形的内角和与外角和相等,都等于360,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360二、填空题1、【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题【详解】解:根据两组对边分别平行的四边形是平行四边形可知:AB/CD,BC/AD,四边形ABCD为平行四边形故答案为:/【点睛】本
13、题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键2、【分析】根据多边形外角和的性质求解即可,多边形的外角和为【详解】解:根据多边形外角和的性质可得,又故答案为:【点睛】此题考查了多边形外角和的性质,解题的关键是掌握多边形外角和的性质3、54【分析】如图,连接AC,PC,设AC交EF于点P,连接BP证明当点P与P重合时,PA+PB的值最小,求出PBC可得结论【详解】解:如图,连接AC,PC,设AC交EF于点P,连接BP正五边形ABCDE中,点F是BC的中点,EFBC,B,C关于EF对称,PBPC,PA+PBPA+PCAC,当点P与P重合时,PA+PB的值最小,ABCDE是正五边
14、形,BABC,ABC108,BACBCA36,PBCP,PBCPCB36,EFB90,BPF90PBC903654故答案为:54【点睛】本题考查正多边形,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型4、1260【分析】由一个多边形的每个外角都等于40,根据n边形的外角和为360计算出多边形的边数n,然后根据n边形的内角和定理计算即可【详解】解:设这个多边形是n边形,则40n360,解得n9这个多边形的内角和为(92)1801260答:这个多边形的内角和为12605、【分析】结合题意,根据多边形外角的性质,得这个多边形为正多边形,并推导得多边形的边数,结合多边形
15、内角和的性质计算,即可得到答案【详解】一个多边形的每一个外角都等于36这个多边形为正多边形,且多边形的边数为: 该多边形的内角和为: 故答案为:【点睛】本题考查了多边形外角和、多边形内角和的知识;解题的关键是熟练掌握多边形外角和、多边形内角和的性质,从而完成求解三、解答题1、(1)见解析;(2);(3)长的最大值为,最小值为【分析】(1)延长至,使,连接,根据题意证明,然后证明四边形为平行四边形,即可得出,;(2)首先根据三角形外角的性质得到,然后由三角形中位线的性质得到,可得到,由即可求出的度数(3)延长至,使,连接,可得,可得当FH最小或最大时,MB最小或最大,由题意可得当点在线段上时,最
16、小,当点在线段的延长线上时,最大,根据勾股定理求出AH的长度,然后即可求出线段长的最大值和最小值【详解】(1)证明:延长至,使,连接,在和中,四边形为平行四边形,;(2)、分别为、的中点,是DAB的中位线,是BCD的中位线,又,;(3)解:延长至,使,连接,由勾股定理得,当点在线段上时,最小,最小值为,当点在线段的延长线上时,最大,最大值为,长的最大值为,最小值为【点睛】此题考查了三角形中位线的性质,勾股定理的运用,线段最值问题,平行四边形的判定和性质,解题的关键是熟练掌握三角形中位线的性质,平行四边形的判定和性质,勾股定理2、(1)54;(2)见解析【分析】(1)首先根据正五边形的性质求出内
17、角度数,以及推出AEDBCD,从而得到ADB为等腰三角形,即可结合“三线合一”的性质推出CDF=EDC,最终得出结论;(2)结合(1)中结论DA=DB,利用“HL”定理求证即可【详解】(1)解:五边形的内角和为,五边形ABCDE为正五边形,AE=ED=DC=CB,EAD=EDA=(180-E)=36,CDB=CBD=(180-C)=36,EDA=CDB,在AED和BCD中,AEDBCD(SAS),DA=DB,ADB为等腰三角形,DFAB,由“三线合一”知,DF平分ADB,BDF=ADF,BDF+CDB=ADF+EDA,CDF=EDF=EDC=54;(2)由(1)得DA=DB,DFAB,DFA=
18、DFB=90,在RtDAF和RtDBF中,RtDAFRtDBF(HL),AF=BF【点睛】本题考查正多边形的性质,全等三角形的判定与性质以及等腰三角形的判定与性质等,掌握基本图形的判定方法和性质是解题关键3、(1)见解析;(2)25【分析】(1)根据平行线的性质(两直线平行,内错角相等,同位角相等)得出两组角相等,然后等量代换即可得;(2)根据平行四边形的判定可得四边形ABED为平行四边形,由垂直及四边形内角和可得,点E到AD的距离为AC,根据平行四边形的等面积法即可得出,再由已知条件即可得出DE长度【详解】解:(1),;(2),四边形ABED为平行四边形,点E到AD的距离为AC,根据四边形内
19、角和可得:,由平行四边形等面积法可得:,根据题意可得:,【点睛】题目主要考查平行线的性质及平行四边形的基本性质,利用平行四边形等面积法确定线段的比是解题关键4、(1)见解析;(2)2【分析】(1)利用ASA定理证明AEBAED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答【详解】解:(1)证明:AE平分,BAE=DAE,AEB=AED=90,在AEB和AED中,AEBAED(ASA)BE=ED,AD=AB,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交
20、于点H,AE平分,BAE=DAE,AEB=AED=90,在AEB和AEH中,AEBAEH(ASA)BE=EH,AH=AB=9,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CH=(AH-AC)=2【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键5、(1)70;60;110;(2);(3)60【分析】(1)根据四边形内角和为360度进行求解即可;先根据平行线的性质求出ABE=180-A=40,再由角平分线的定义求出ABC=2ABE=80,再由四边形内角和为360度进行求解即可;先根据四边形内角和为360度求出
21、ABC+ACB =140,再由角平分线的定义得到,最后利用三角形内角和定理求解即可;(2)同(1)的方法求解即可;(3)同(1)的方法,先求出,然后根据角平分线的定义以及三角形内角和定理求解即可【详解】(1)A=140,D=80,B=C,故答案为:70;BEAD,A=140,ABE=180-A=40,BE平分ABC,ABC=2ABE=80,C=360-A-D-ABC=60,故答案为:60;A140,D80,ABC+ACB=360-A-D=140,ABC和BCD的平分线相交于点E,故答案为:110;(2),ABC和BCD的平分线相交于点E,故答案为:;(3),又CP,DP分别平分BCD和EDC,.,【点睛】本题主要考查了四边形内角和,三角形内角和定理,多边形内角和公式,角平分线的定义,解题的关键在于能够熟练掌握多边形内角和公式