精品解析2022年人教版八年级数学下册第十九章-一次函数专题训练试题(含详细解析).docx

上传人:知****量 文档编号:28218731 上传时间:2022-07-26 格式:DOCX 页数:26 大小:360.32KB
返回 下载 相关 举报
精品解析2022年人教版八年级数学下册第十九章-一次函数专题训练试题(含详细解析).docx_第1页
第1页 / 共26页
精品解析2022年人教版八年级数学下册第十九章-一次函数专题训练试题(含详细解析).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《精品解析2022年人教版八年级数学下册第十九章-一次函数专题训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版八年级数学下册第十九章-一次函数专题训练试题(含详细解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十九章-一次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、变量,有如下关系:;其中是的函数的是( )ABCD2、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发

2、,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:A,B港口相距400km;B,C港口相距300km;甲船的速度为100km/h;乙船出发4h时,两船相距220km,其中正确的个数是( )A1B2C3D43、在同一平面直角坐标系中,一次函数ykxb与正比例函数yx(k,b是常数,且kb0)的图象可能是( )ABCD4、在函数y=中,自变量x的取值范围是()Ax3Bx3Cx4Dx3且x45、若函数满足,则函数的图象可能是( )AB

3、CD6、小亮从家步行到公交车站台,等公交车去学校图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系则小亮步行的速度和乘公交车的速度分别是( )A100 m/min,266m/minB62.5m/min,500m/minC62.5m/min,437.5m/minD100m/min,500m/min7、如图,在平面直角坐标系中,点A的坐标为,沿x轴向右平移后得到,A点的对应点在直线上,则点与其对应点之间的距离为( )A4B6C8D108、如图,A、B两地相距,甲、乙两人沿同一条路线从A地到B地甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以的速度匀速行驶1小时后提高速度并继续匀速行

4、驶,结果比甲提前到达甲、乙两人离开A地的距离与时间的关系如图所示,则乙出发几小时后和甲相遇?( )A小时B小时C小时D小时9、甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了3min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示有下列说法:A,B之间的距离为1200m;乙行走的速度是甲的1.5倍;b700;a33以上结论正确的有()ABCD10、一次函数的一般形式是(k,b是常数)( )Ay=kx+bBy=kxCy=kx+b(k0)Dy=x第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)

5、1、如图,已知直线,过点M(1,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,;按此作法继续下去,则点的坐标为_2、一次函数图象y(k3)x+k29经过原点,则k的值为_3、函数ykxb(k0)的图象平行于直线yx3,且交y轴于点(0,1),则其函数表达式是_4、已知一次函数y=ax+b(a,b是常数,a0)中,x与y的部分对应值如表,x01234y6420那么关于x的方程ax+b=0的解是_5、在平面直角坐标系中,点A(1,4),B(4,2),C(m,m)当以点A、B、C为顶点构成的ABC周长最小

6、时,m的值为_三、解答题(5小题,每小题10分,共计50分)1、已知一次函数的图象平行于直线y=12x,且经过点A(2,3)求这个一次函数的解式2、如图1,矩形ABCD中,AB9,AD12,点G在CD上,且DG5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒(1)APG的面积为y,求y关于x的函数关系式,并求y34时x的值;(2)在点P从B向C运动的过程中,是否存在使APGP的时刻?若存在,求出x的值,若不存在,请说明理由;(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状 ,并直接写出它的面积 3、如图,A

7、BC的三个顶点坐标分别为A(2,3),B(1,1),C(5,3)(1)作ABC关于y轴对称的图形ABC,并写出点A,C的坐标;(2)在x轴上找一点P,使得PC+PB最小,请直接写出点P的坐标4、阅读下列一段文字,然后回答问题已知在平面内两点P1x1,y1、P2x2,y2,其两点间的距离P1P2=x1-x22+y1-y22,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为x2-x1或y2-y1(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为-1,试求A、B两点之间的距离;(2)已知一个三角形各顶点坐标为D(1,6)、E(-2,2)、F(4,

8、2),你能判定此三角形的形状吗?说明理由(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度5、某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8000元设商场投入资金x元,请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多-参考答案-一、单选题1、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可【详解】解:满

9、足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;,当时,则y不是x的函数;综上,是函数的有故选:B【点睛】本题主要考查了函数的定义在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数2、B【解析】【分析】根据图象可知A、B港口相距400km,从而可以判断;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地甲船的速度是乙船的1.25倍,可以

10、计算出B、C港口间的距离,从而可以判断;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断【详解】解:由题意和图象可知, A、B港口相距400km,故正确;甲船的速度是乙船的1.25倍, 乙船的速度为:1001.25=80(km/h), 乙船的速度为80km/h, 40080=(400+)100-1, 解得:=200km, 故错误; 甲船4个小时行驶了400km, 甲船的速度为:4004=100(km/h), 故正确; 乙出发4h时两船相距的距离是:480+(4+1-4)100=420(km), 故错误故

11、选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题3、C【解析】【分析】根据一次函数的图象与系数的关系,由一次函数ykx+b图象分析可得k、b的符号,进而可得的符号,从而判断的图象是否正确,进而比较可得答案【详解】解:根据一次函数的图象分析可得:A、由一次函数ykx+b图象可知k0,b0,则0;正比例函数的图象可知0,矛盾,故此选项不符合题意;B、由一次函数ykx+b图象可知k0,b0;即0,与正比例函数的图象可知0,矛盾,故此选项不符合题意;C、由一次函数ykx+b图象可知k0,b0;即0,与正比例函数的图象可知0,故此选项符合

12、题意;D、由一次函数ykx+b图象可知k0,b0;即0,与正比例函数的图象可知0,矛盾,故此选项不符合题意;故选C【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:当k0,b0,函数y=kx+b的图象经过第一、二、三象限;当k0,b0,函数y=kx+b的图象经过第一、三、四象限;当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;当k0,b0时,函数y=kx+b的图象经过第二、三、四象4、D【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围【详解】解:x-30,x3,x-40,x4,综上,x3且x4,故选:

13、D【点睛】主要考查了函数自变量的取值范围的确定和分式的意义函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数5、D【解析】【分析】由可得a,c互为相反数,由可得a0,根据一次函数的图象与性质即可得解【详解】解:,a,c互为相反数,a0,函数的图象经过一、二、四象限故选D【点睛】本题考查了一次函数图象与性质,相反数的性质对于一次函数y=kx+b(k0),当k0时,图象经过一、三象限,当k0时,图象与y轴正半轴有交点,当b=0时,图象经过原点,当b0时,图象与y轴负

14、半轴有交点6、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(3016)min走了(81)km,故公交车的速度为700014500m/min故选:D【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一7、D【解析】【分析】先根据平移的特点可知所求的距离为,且,点纵坐

15、标与点A纵坐标相等,再将其代入直线求出点横坐标,从而可知的长,即可得出答案【详解】解:A(0,6)沿x轴向右平移后得到,点的纵坐标为6,令,代入直线得,的坐标为(10,6),由平移的性质可得,故选D【点睛】本题考查了平移的性质、一次函数图像上点的坐标特点,掌握理解平移的性质是解题关键8、A【解析】【分析】先标记字母如图,求出点C,D,E坐标,利用待定系数法求OE与CD解析式,根据路程相等列方程,解方程求出时间x,再求出乙追上甲的时间即可【详解】解:乙以的速度匀速行驶1小时到C,C(2,2),点D(4,20)点E(5,20),设OE解析式为,CD解析式为,点E在图像上,解得,OE解析式为,点C、

16、D在图像上,解得,CD解析式为,乙出发后和甲相遇路程相等得,解得,乙出发时后和甲相遇故选择A【点睛】本题考查一次函数行程问题应用,待定系数法求解析式,解二元一次方程组,解题关键是根据路程相等列出方程9、A【解析】【分析】由x=0时y=1200,可得出A、B之间的距离为1200m;根据速度=路程时间可求出乙的速度,再根据甲的速度=路程时间-乙的速度可求出甲的速度,二者相除即可得出结果;根据路程=二者速度和运动时间,即可求出b=900;根据甲走完全程所需时间=两地间的距离甲的速度+3,即可求出a=31综上即可得出结论【详解】解:当x0时,y1200,A、B之间的距离为1200m,结论正确;乙的速度

17、为1200(243)(m/min),甲的速度为120012(m/min),=,乙行走的速度不是甲的1.5倍,结论错误;b(+)(24312)900,结论错误;a1200+331,结论错误故结论正确的有,故选:A【点睛】本题考查了一次函数的应用,观察函数图象结合数量关系逐一分析四个说法的正误是解题的关键10、C【解析】【分析】根据一次函数的概念填写即可【详解】解:把形如y=kx+b(k,b是常数,k0)的函数,叫做一次函数,故选:C【点睛】本题考查了一次函数的概念,做题的关键是注意k0二、填空题1、,【解析】【分析】先求出和的长,再根据题意得出,即可求出的坐标【详解】解:直线的解析式是,点的坐标

18、是,轴,点在直线上,又,即同理,点的坐标是,故答案是:,【点睛】本题主要考查一次函数图象上点的坐标特点,涉及到如何根据一次的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,熟悉相关知识的综合应用是解题的关键2、-3【解析】【分析】根据函数图象上点的坐标特征,把原点坐标代入解析式可求出k=3或-3【详解】解:一次函数图象y(k3)x+k29经过原点,k30,即k3,把(0,0)代入y=(k-3)x+k2-9得k2-9=0,解得k=3或-3,k的值为-3故答案为:-3【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k0,且k,b为常数)的图象是一条直线直线上任

19、意一点的坐标都满足函数关系式y=kx+b注意一次项系数不为03、y=x-1【解析】【分析】根据平行直线的解析式求出k值,再把点的坐标代入解析式求出b值即可【详解】解:函数ykxb(k0)的图象平行于直线yx3,k=1,线yx+b交y轴于点(0,-1),b=-1,函数的表达式是y=x-1,故答案为:y=x-1【点睛】本题考查了求一次函数解析式,涉及了两直线平行的问题,熟知两直线平行时,k值相等是解题的关键4、x=2【解析】【分析】方法一:先取两点利用待定系数法求出一次函数解析式,再求方程的解即可;方法二:直接根据图表信息即可得出答案;【详解】解:方法一:取(0,4),(1,2)分别代入y=ax+

20、b,得b=4,a+b=2,解得a=-2,b=4,此时方程-2x+4=0的解为x=2方法二:根据图表可得:当x=2时,y=0,因而方程ax+b=0的解是x=2故答案为:x=2【点睛】本题考查了一次函数,准确利用图表信息、熟练掌握一次函数的相关知识是解题关键5、【解析】【分析】作B点关于直线yx的对称点B,连接AB,则有BCBC,所以ABC周长最小值为AB+AB的长,求出直线直线AB的解析式为yx+,联立方程组,可求C点坐标【详解】解:C(m,m),点C在直线yx上,作B点关于直线yx的对称点B,连接AB,BCBC,BC+ACBC+ACAB,ABC周长AB+BC+ACAB+BC+ACAB+AB,A

21、BC周长最小值为AB+AB的长, B(4,2),B(2,4),A(1,4),设直线AB的解析式为ykx+b,yx+,联立方程组,解得,C(,),m,故答案为:【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,掌握待定系数法求函数解析式的方法是解题的关键三、解答题1、y=12x+2【解析】【分析】首先设出一次函数的解析式为y=kx+b,然后根据一次函数的图象平行于直线y=12x求出k的值,然后将点A(2,3)代入求解即可【详解】解:设一次函数的解析式为y=kx+b一次函数的图象平行于直线y=12x,k=12, 一次函数的图象经过点A(2,3),3=122+b,b=2 一次函数的解

22、析式为y=12x+2【点睛】此题考查了待定系数法求一次函数表达式,两条一次函数图像平行的性质,解题的关键是熟练掌握待定系数法求一次函数表达式2、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15【解析】【分析】(1)PB=x,PC=12-x,然后依据APG的面积=矩形的面积-三个直角三角形的面积可得到y与x的函数关系式,然后将y=34代入函数关系式可求得x的值;(2)先依据勾股定理求得PA、PG、AG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;(3)确定出点P分别与点B和点C重合时,点M、N的位置,然后依据三角形的中位线定理可证明M1M2N1N

23、2,N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可【详解】解:(1)四边形ABCD为矩形,DC=AB=9,AD=BC=12DG=5,GC=4PB=x,PC=12-x,y=912-129x-124(12-x)-12512,整理得:y=-2.5x+54当y=34时,-2.5x+54=34,解得x=8;(2)存在PB=x,PC=12-x,AD=12,DG=5,PA2=AB2+BP2=81+x2,PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169当AG2=AP2+PG2时,APPG,81+x2+(12-x)2+16=169,整理得:x

24、2-12x+36=0,配方得:(x-6)2=0,解得:x=6;(3)如图所示:当点P与点B重合时,点M位于M1处,点N位于点N1处,M1为AB的中点,点N1位GB的中点当点P与点C重合时,点M位于M2处,点N位于点N2处,M2为AC的中点,点N2位CG的中点M1M2BC,M1M2=12BC,N1N2BC,N1N2=12BCM1M2N1N2,N1N2=M1M2四边形M1M2N2N1为平行四边形MN扫过的区域为平行四边形S=12BC(12AB-12CG)=62.5=15,故答案为:平行四边形;15【点睛】本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股

25、定理的应用,画出MN扫过的图形是解题的关键3、(1)见解析, A(-2,3);C(-5,3);(2)P(2,0)【解析】【分析】(1)根据题意得:点A(2,3),B(1,1),C(5,3)关于y轴对称的对应点分别为A(-2,3);B(-1,1);C(-5,3);再顺次连接,即可求解;(2)根据轴对称性,可得:PB1=PB,从而得到当点P在直线B1C上时,PC+PB最小,然后求出直线B1C的解析式,即可求解【详解】解:(1)根据题意得:点A(2,3),B(1,1),C(5,3)关于y轴对称的对应点分别为A(-2,3);B(-1,1);C(-5,3);画出图形,如图所示:(2)作点B关于x轴的对称

26、点B1,连接B1C交x轴于点P,点P即为所求,理由:点B和点B1关于x轴的对称,PB1=PB,PC+PB=PC+PB1B1C,当点P在直线B1C上时,PC+PB最小,B(1,1),B1(1,-1),设直线B1C的解析式为y=kx+bk0 ,k+b=-15k+b=3 ,解得:k=1b=-2 ,直线B1C的解析式为y=x-2,当y=0时,x=2 ,P(2,0)【点睛】本题主要考查了坐标与图形,图形的变换轴对称,最短线段问题,熟练掌握轴对称图形的性质是解题的关键4、(1)5;(2)能,理由见解析;(3)134,0,73【解析】【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间

27、的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值【详解】(1)A、B两点在平行于y轴的直线上AB=4-(-1)=5即A、B两点间的距离为5(2)能判定DEF的形状由两点间距离公式得:DE=(-2-1)2+(2-6)2=5,DF=(4-1)2+(2-6)2=5,EF=4-(-2)=6DE=DFDEF是等腰三角形(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小由对

28、称性知:点G的坐标为(4,-2),且PG=PFPD+PF=PD+PGDG即PD+PF的最小值为线段DG的长设直线DG的解析式为y=kx+b(k0),把D、G的坐标分别代入得:k+b=64k+b=-2解得:k=-83b=263即直线DG的解析式为y=-83x+263上式中令y=0,即-83x+263=0,解得x=134即点P的坐标为134,0由两点间距离得:DG=DG=(4-1)2+(-2-6)2=9+64=73所以PD+PF的最小值为73【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问

29、题转化为两点间线段最短问题5、若商场投入资金为20万元,两种出售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多【解析】【分析】先求出月初销售方案获利y1元=本月初获利本金获利百分比+下月初获利(本金+获利)获利百分比;下月初出售方案获利本金获利百分比-支付仓储费,让两种获利相等列方程,解方程即可【详解】解:设如果商场本月初出售,下月初可获利y1元,则y110%x(110%)x10%0.1x0.11x0.21x,设如果商场下月初出售,可获利y2元,则y225%x8 0000.25x8 000,当y1y2时,0.21x0.25x8 000,解得x200 000,所以若商场投入资金为20万元,两种出售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多【点睛】本题考查列一次函数关系式解销售获利问题应用,掌握列一出函数解析式的方法,方案设计中分类讨论方法是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁