《精品解析2022年人教版九年级数学下册第二十六章-反比例函数专题测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十六章-反比例函数专题测评试卷(名师精选).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十六章-反比例函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、市一小学数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示,设矩形的宽为xcm,长为y
2、cm,那么这些同学所制作的矩形长y(cm)与宽x(cm)之间的函数关系的图象大致是( )A BCD2、若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y的图象上的点,并且x10x2x3,则下列各式中正确的是()Ay1y3y2By2y3y1Cy3y2y1Dy1y2y33、已知函数中,在每个象限内,y随x的增大而增大,那么它和函数ykx(k0)在同一直角坐标平面内的大致图象是()ABCD4、若反比例函数的图象经过点,则这个函数的图象一定经过点( )ABCD5、已知反比例函数y的图象如图所示,则一次函数ycx+a和二次函数yax2bx+c在同一直角坐标系中的图象可能是()ABCD6、
3、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S27、已知点(x1,y1),(x2,y2)均在双曲线y上,下列说法中错误的是()A若x1x2,则y1y2B若x1x2,则y1y2C若0x1x2,则y1y2D若x1x20,则y1y28、已知反比例函数y,下列结论不正确的是()A图象经过点(1,1)B图象在第一、三象限C当x1时,0y1Dy随着x的增大而减小9、如图
4、,等腰中,点B在y轴上,/x轴,反比例函数(,)的图象经过点A,交BC于点D若,则k的值为( )A60B48C36D2010、若点A(-7,y1),B(-4,y2),C(5,y3),在反比例函数的图象上,则,的大小关系是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=(x0)的图象上,则k的值为_2、如图,函数和函数的图象相交于点,若,则x的取值范围是_3、点三点都在反比例函数图象上,则、的大小关系是_(用“0,y0)故选A【点睛】现实生活中存在大量成反比例函数的两个变量,
5、解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限2、B【分析】先根据,可以得到,则可得到反比例函数的图象位于二、四象限,如图在每个象限内,y随x的增大而增大,据此求解即可【详解】解:,反比例函数的图象位于二、四象限,如图,在每个象限内,y随x的增大而增大,x10x2x3,y2y3y1故选B【点睛】本题主要考查了比较反比例函数的函数值的大小,解题的关键在于能够根据题意得到从而判断出反比例函数图像的增减性3、B【分析】先根据反比例函数图象的性质判断出k的范围,再确定其所在象限,进而确定正比例函数图象所在象限即可解答【详解】解:函数中,在每个象限内,y随x的增大而增大
6、,k0,双曲线在第二、四象限,函数ykx的图象经过第二、四象限,B选项满足题意故选:B【点睛】本题主要考查了反比例函数图象的性质与正比例函数图象的性质,掌握k对正比例函数和反比例函数图象的影响成为解答本题的关键4、C【分析】先根据反比例函数的图象经过点,求出反比例函数解析式,由此求解即可【详解】解:反比例函数的图象经过点,反比例函数解析式为、,函数图象不过此点,故本选项错误;、,函数图象不经过此点,故本选项错误;、,函数图象经过此点,故本选项正确;、,函数图象不过此点,故本选项错误故选【点睛】本题主要考查了求反比例函数解析式,反比例函数图像上点的坐标特征,熟知反比例函数的相关知识是解题的关键5
7、、D【分析】根据反比例函数图象的性质得到,再根据一次函数与二次函数的图象性质判断即可;【详解】反比例函数的图象在一、三象限,A二次函数的开口向上,对称轴在y轴右侧,a、b异号,与不相符,故A错误;B. 二次函数的开口向下,对称轴在y轴右侧,a、b异号,与已知b0矛盾故B错误;C.二次函数的开口向上,对称轴在y轴右侧,a、b异号,二次函数图象与y轴交于负半轴,一次函数ycx+a的图象过二、三、四象限,故C错误;D. 二次函数的开口向上,对称轴在y轴右侧,a、b异号,c0,所以一次函数图象经过第一、二、四象限故D正确;故选D【点睛】本题主要考查了反比例函数的图象性质,一次函数的图象性质,二次函数的
8、图象性质,准确分析判断是解题的关键6、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME=OM=OE,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意
9、义找出S矩形ODBC=-k、SEOF=-2k是解题的关键7、D【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线y,用y1、y2表示出x1,x2,据此进行判断【详解】解:点(x1,y1),(x2,y2)均在双曲线y上,y1,y2A、当x1x2时,即y1y2,故本选项说法正确;B、当x1x2时,即y1y2,故本选项说法正确;C、因为双曲线y位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当0x1x2时,y1y2,故本选项说法正确;D、因为双曲线y位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当x1x20时,y1y2,故本选项说法错误;故选:D【点睛】本题主要考查了反
10、比例函数的图象性质,熟悉掌握反比例函数的图象变化进行比较是解题的关键8、D【分析】根据反比例函数的性质,利用排除法求解【详解】解:A、x=1,y=1,图象经过点(1,1),正确;B、k=10,图象在第一、三象限,正确;C、k=10,图象在第一象限内y随x的增大而减小,当x1时,0y1,正确;D、应为当x0时,y随着x的增大而减小,错误故选:D【点睛】本题考查了反比例函数的性质,当k0时,函数图象在第一、三象限,在每个象限内,y的值随x的值的增大而减小9、A【分析】过A作AEBC于E交x轴于F,则由三线合一定理得到,即可利用勾股定理求出,设OB=a,由BD=AB=5,得到A点坐标为(4,a+3)
11、,D点坐标为(5,a),再由反比例函数(,)的图象经过点A,交BC于点,由此求解即可【详解】解:过A作AEBC于E交x轴于F,设OB=a,BD=AB=5,A点坐标为(4,a+3),D点坐标为(5,a),反比例函数(,)的图象经过点A,交BC于点,解得:a=12,k=60,故选A【点睛】本题主要考查了坐标与图形,三线合一定理,勾股定理,反比例函数图像上点的坐标特点,解题的关键在于能够熟练掌握相关知识进行求解10、D【分析】由反比例函数解析式可知反比例函数图象在第一、三象限,该函数在每个象限内,随的增大而减小,由此进行求解即可【详解】点,在反比例函数的图象上,函数图象在第一、三象限,该函数在每个象
12、限内,随的增大而减小,即,故选D【点睛】本题主要考查了反比例函数图像的性质,解题的关键在于能够熟练掌握反比例函数图像的性质二、填空题1、【解析】【分析】连接,交轴于点,设点的坐标为,从而可得,先根据菱形的面积公式和性质可得,从而可得,再将点的坐标代入反比例函数的解析式即可得【详解】解:如图,连接,交轴于点,设点的坐标为,则,菱形的面积为12,即,解得,将点代入反比例函数得:,故答案为:【点睛】本题考查了反比例函数与几何综合、菱形的性质,熟练掌握菱形的性质是解题关键2、或#或【解析】【分析】根据表示的是一次函数的图象位于反比例函数的图象的上方即可得【详解】解:表示的是一次函数的图象位于反比例函数
13、的图象的上方,则由函数图象可知,或,故答案为:或【点睛】本题考查了一次函数与反比例函数的综合,熟练掌握函数图象法是解题关键3、【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论【详解】解:反比例函数中,k=-10,函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大-2-10,30,点A(-2,y1),B(-1,y2)在第二象限,点C(3,y3)在第四象限,y3y1y2故答案为:y3y1y2【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键4、3【解
14、析】【分析】根据反比例函数基本定义求解即可【详解】解:根据反比例函数定义得:反比例函数中,k3,故答案为:3【点睛】本题考查反比例函数的基本定义,理解反比例函数各字母的含义是解题关键5、#2.5【解析】【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,3),B(3,2)再过A,B两点分别作ACx轴于C,BDx轴于D,根据反比例函数系数k的几何意义得出SAOCSBOD63根据S四边形AODBSAOB+SBODSAOC+S梯形ABDC,得出SAOBS梯形ABDC,利用梯形面积公式求出S梯形ABDC,从而求得SAOB【详解】解:A,B是反比例函数y在第一象限内的图象上的两点
15、,且A,B两点的横坐标分别是2和3,当x2时,y3,即A(2,3),当x3时,y2,即B(3,2)如图,过A,B两点分别作ACx轴于C,BDx轴于D,则SAOCSBOD63S四边形AODBSAOB+SBODSAOC+S梯形ABDC,SAOBS梯形ABDC,S梯形ABDC(BD+AC)CD(3+2)12.5,SAOB2.5故答案为2.5【点睛】考查了反比例函数y中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S|k|也考查了反比例函数图象上点的坐标特征,梯形的面积三、解答题1、(1)反比例函数的解析式为,一次函数的解析式为 ;(2) 或;(3)
16、【分析】(1)把点A(1,4)代入,可求出反比例函数的解析式,从而得到点 ,再将把点A(1,4),点代入 ,可得到一次函数的解析式,即可求解;(2)观察图象可得:当 或 时,即可求解;(3)连结OA,OB,设直线与x轴交于点D,y轴交于点C,可得到,即可求解【详解】解:(1)把点A(1,4)代入,得: ,反比例函数的解析式为,B(4,n)在反比例函数图象上, ,点 ,把点A(1,4),点代入 ,得: ,解得: ,一次函数的解析式为 ;(2)观察图象,得:当 或 时,不等式的解集为 或;(3)如图,连结OA,OB,设直线与x轴交于点D,y轴交于点C,当 时, ,当 时, ,点 ,OC=5,OD=
17、5,点A(1,4),点, 【点睛】本题主要考查了一次函数与反比例函数的交点问题,准确利用待定系数法求出两个函数解析式是解题的关键2、(1);(2)【分析】(1)先求得B(1,6),再利用待定系数法求反比例函数的表达式;(2)利用等腰直角三角形的性质求得C(2,3),利用待定系数法即可得求直线BC的表达式【详解】解:(1)直线y=3x+3经过点B(1,m),点B的坐标为(1,6),反比例函数经过点B,反比例函数的表达式为;(2)点A为直线y=3x+3与x轴的交点,A(-1,0),如图,过C作轴于点D,设点C的坐标为,解得,(不合题意,舍去),经检验,是分式方程的解,C(2,3),设直线BC的表达
18、式为,将B、C两点的坐标代入得,解得,直线BC的表达式为【点睛】本题是反比例函数与一次函数的综合题,考查了待定系数法求函数的解析式,等腰直角三角形的性质,利用等腰直角三角形的性质求得点C的坐标是解题的关键3、(1);(2)【分析】(1)将点和代入解析式,待定系数法求解析式即可求得的值;(2)联立双曲线解析式与直线解析式即可求得点的坐标,根据第一象限的点坐标特征取舍即可【详解】解:(1)直线过点和,解得(2)解方程组得或【点睛】本题考查了一次函数与反比例函数综合,待定系数法求一次函数解析式,求一次函数与反比例函数交点问题,解一元二次方程,求得直线解析式是解题的关键4、(1)y=,y=-x+2;(
19、2)4;(3)【分析】(1)设出A坐标(x,y),表示出OB与AB,进而表示出三角形ABO面积,由已知面积确定出反比例函数k的值,进而确定出一次函数;(2)联立反比例函数与一次函数解析式,求出A与C坐标即可;由一次函数解析式求出交点的坐标,然后三角形AOC面积=两个三角形面积的和,求出即可;(3)根据图象即可求得【详解】解:(1)设A点坐标为(x,y)则=, =, k , k=-3,所求的两个函数的解析式分别为y=-,y=-x+2;(2)由y=-x+2,令x=0,得y=2直线y=-x+2与y轴的交点D的坐标为(0,2),由题意,得 ,解得,交点A为(-1,3),C为(3,-1),(3)根据图象
20、得,一次函数值大于反比例函数值的x的取值范围为:或【点睛】本题考查反比例函数与一次函数的交点问题,三角形的面积等知识,解题的关键是熟练掌握待定系数法解决问题,学会构建方程组确定两个函数的交点坐标,学会用分割法求三角形面积5、(1)y;(2)m,n12【分析】(1)过点A作轴于D,可证,得出点坐标,待定系数法求出解析式即可,(2)将点代入(1)中解析式和直线的解析式中,分别求出,的值即可【详解】解:(1)如图,过点A作轴于D,则,点C的坐标为(2,0),点B的坐标为(0,4),OD=OC+CD=6,点A的坐标为(6,2),把A点坐标代入到反比例函数中,得,反比例函数解析式为;(2)在上,设直线OA解析式为,直线OA解析式为直线向上平移个单位后的解析式为:,直线图象经过(1,12)解得:,【点睛】本题考查了待定系数法求反比例函数解析式,正比例函数解析式,函数图像的平移,三角形全等的性质与判定,解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想