模拟真题2022年中考数学模拟定向训练-B卷(含答案详解).docx

上传人:知****量 文档编号:28208494 上传时间:2022-07-26 格式:DOCX 页数:27 大小:812.23KB
返回 下载 相关 举报
模拟真题2022年中考数学模拟定向训练-B卷(含答案详解).docx_第1页
第1页 / 共27页
模拟真题2022年中考数学模拟定向训练-B卷(含答案详解).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《模拟真题2022年中考数学模拟定向训练-B卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《模拟真题2022年中考数学模拟定向训练-B卷(含答案详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年中考数学模拟定向训练 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在,中,最大的是( )ABCD2、如图,在中,D,E分别是边,上的点,若

2、,则的度数为( )ABCD3、无论a取什么值时,下列分式总有意义的是( )ABCD4、化简的结果是( )A1BCD5、如图,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图.这个拼成的长方形的长为30,宽为20,则图中部分的面积是()A60B100C125D1506、如图所示,AB,CD相交于点M,ME平分,且,则的度数为( )ABCD7、如图,正方形的边长,分别以点,为圆心,长为半径画弧,两弧交于点,则的长是( )ABCD8、已知ab,则下列不等式中不正确的是()A2a2bBa5b5C2a2bD 线 封 密 内 号学级年名姓 线 封 密 外 9、如果

3、,那么的取值范围是( )ABCD10、如图,已知是的直径,过点的弦平行于半径,若的度数是,则的度数是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则a=_, b=_2、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是_3、已知二次函数与反比例函数的图像在第二象限内的一个交点的横坐标是2,则m的值是_4、若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b -mcd=_.5、如图,是的弦,是上一点,交于点,连接,若,则的度数为_三、解答题(5小题,每小题10分,共计50分)1、解方程:2、以下表格是某区一户人家2021年11月份、1

4、2月份两次缴纳家庭使用自来水水费的回执,已知污水费、水资源费等都和用水量有关,根据表中提供的信息回答下列问题:表1:上月指数387本月指数403加减水量0吨水量l6吨污水费16.8元垃圾费8.00元水资源费3.20元水价1.45水费23.20元违约金0.00元合计51.20元缴费状态已缴表2:上月指数403本月指数426加减水量0吨水量a吨污水费b元垃圾费8.00元 线 封 密 内 号学级年名姓 线 封 密 外 水资源费4.60元水价1.45水费33.35元违约金0.00元合计c元缴费状态已缴(1)根据表1可知,污水费每吨 元,水资源费每吨 元;(2)请写出表2中a ,b ,c ;(3)若该用

5、户某个月份缴纳该项费用回执中合计是89元,则该用户这个月共消耗自来水多少吨?3、在平面直角坐标系中,抛物线与x轴交于点和点B,与y轴交于点C,顶点D的坐标为(1)直接写出抛物线的解析式;(2)如图1,若点P在抛物线上且满足,求点P的坐标;(3)如图2,M是直线BC上一个动点,过点M作轴交抛物线于点N,Q是直线AC上一个动点,当为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标4、如图是一座抛物线形的拱桥,拱桥在竖直平面内,与水平桥相交于A,B两点,拱桥最高点C到AB的距离为9m,AB36m,D,E为拱桥底部的两点,DEAB(1)以C为原点,以抛物线的对称轴为y轴建立直角坐标系,求出此时抛物

6、线的解析式(忽略自变量取值范围)(2)若DE48m,求E点到直线AB的距离5、如图,将边长为4的正方形纸片ABCD折叠,使点A落在边CD上的点M处(不与点C、D重合),连接AM,折痕EF分别交AD、BC、AM于点E、F、H,边AB折叠后交边BC于点G(1)求证:EDMMCG;(2)若DMCD,求CG的长;(3)若点M是边CD上的动点,四边形CDEF的面积S是否存在最值?若存在,求出这个最值;若不存在,说明理由-参考答案-一、单选题1、B【分析】根据绝对值及乘方进行计算比较即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】,中,最大的是故选:B【点睛】本题考查了有理数的乘方和绝对值,熟

7、练掌握运算法则是解题的关键2、D【分析】根据,推出,再由,得到,利用直角三角形中两个锐角互余即可得出.【详解】,DEB+DEC=180,又,即故选:D【点睛】本题考查了全等三角形的性质,直角三角形两个锐角和等于90,掌握全等的性质是解题的关键.3、D【分析】根据分式有意义的条件是分母不等于零进行分析即可【详解】解:A、当a0时,分式无意义,故此选项错误;B、当a1时,分式无意义,故此选项错误;C、当a1时,分式无意义,故此选项错误;D、无论a为何值,分式都有意义,故此选项正确;故选D【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零4、D【分析】括号里通分化简,然

8、后根据除以一个数等于乘以这个数的倒数计算即可【详解】解:原式,故选:D【点睛】本题考查了分式的混合运算,熟知运算法则是解题的关键5、B【分析】分析图形变化过程中的等量关系,求出变化后的长方形部分的长和宽即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:如图:拼成的长方形的长为(a+b),宽为(a-b),解得a=25,b=5,长方形的面积=b(a-b)=5(25-5)=100故选B【点睛】本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系6、C【分析】先求出,再根据角平分线的性质得到,由此即可求解【详解】解:,ME平分,故

9、选C【点睛】本题主要考查了角平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解7、A【分析】根据条件可以得到ABE是等边三角形,可求EBC=30,然后利用弧长公式即可求解【详解】解:连接,是等边三角形,的长为故选A【点睛】本题考查了正方形性质,弧长的计算公式,正确得到ABE是等边三角形是关键. 如果扇形的圆心角是n,扇形的半径是R,则扇形的弧长l的计算公式为: 线 封 密 内 号学级年名姓 线 封 密 外 8、C【解析】【分析】根据不等式的性质分别对每一项进行分析,即可得出答案【详解】Aab,根据不等式两边同时加上2,不等号方向不变,2a2b,正确;Bab,根据不等式两边同时加5,不等号

10、方向不变,a5b5,正确;Cab,根据不等式两边同时乘以2,不等号方向改变,2a2b,本选项不正确;Dab,根据不等式两边同时乘以,不等号方向不变,正确故选C【点睛】本题考查了不等式的性质,掌握不等式的性质是解决本题的关键;不等式两边加(或减)同一个数(或式子),不等号的方向不变(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变9、C【分析】根据绝对值的性质,得出,即可得解.【详解】由题意,得解得故选:C.【点睛】此题主要考查绝对值的性质,熟练掌握,即可解题.10、A【分析】根据平行线的性质和圆周角定理计算即可;【详解】,故选A【点

11、睛】本题主要考查了圆周角定理、平行线的性质,准确计算是解题的关键二、填空题1、2 2 【分析】先根据异分母分式的加法法则计算,再令等号两边的分子相等即可【详解】解:,a(x2)b(x2)4x,即(ab)x2(ab)4x, 线 封 密 内 号学级年名姓 线 封 密 外 ab4,ab0,a=b=2,故答案为:2,2.【点睛】本题考查的是分式的加减法,在解答此类问题时要注意通分的应用2、三角形的稳定性【详解】一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性故应填:三角形的稳定性3、-7【详解】已知二次函数y=-4x2-2mx+m2与反比例函数y=的图象在第二象限内的一个交点的横

12、坐标是-2,交点的纵坐标一定是同一个数值,因而把x=-2分别代入解析式,得到的两个函数值一定相同,就得到一个关于m的方程,从而求出m的值解:根据题意得:-44+4m+m2=,解得:m=-7或2又交点在第二象限内,故m=-74、-1或1【分析】由a、b互为相反数,c、d互为倒数,m的绝对值是1得出a+b=0、cd=1,m=1,代入计算即可【详解】解:a、b互为相反数,c、d互为倒数,m的绝对值是1,a+b=0、cd=1,m=1,当m=1时,3a+3b -mcd=3(a+b)-mcd=0-1= -1,当m=-1时,3a+3b -mcd=3(a+b)-mcd=0-(-1)= 1故答案为:-1或1【点

13、睛】本题考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键5、【分析】设AOC=x,根据圆周角定理得到B的度数,根据三角形的外角的性质列出方程,解方程得到答案【详解】解:设AOC=x,则B=x,AOC=ODC+C,ODC=B+A,x=20+30+x, 解得x=100 故选A【点睛】本题主要考查的是圆周角定理和三角形的外角的性质,掌握一条弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键三、解答题1、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1进行计算即可【详解】去分母

14、,得,去括号,得,移项,得,合并同类项,得,系数化为1,得【点睛】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键2、(1)(2),(3)该用户这个月共消耗自来水30吨.【分析】(1)由污水费除以用水的数量可得污水费的单价,由水资源费除以用水的数量可得水资源费的单价;(2)由本月指数减去上月指数可得用水量,由用水数量乘以污水费的单价可得污水费用,再把污水费,水资源费,垃圾费,水费相加即可得到的值;(3)设该用户这个月共消耗自来水吨,再由污水费,水资源费,垃圾费,水费之和为89列方程解方程即可.(1)解:由表1可得:污水费每吨(元),水资源费每吨(元),故答案为:(2)解:

15、用水量(吨),污水费(元),总费用(元).故答案为:(3)解:设该用户这个月共消耗自来水吨,则 整理得: 解得: 答:设该用户这个月共消耗自来水吨.【点睛】本题考查的是有理数的加减乘除运算的实际应用,一元一次方程的应用,理解题意列出运算式,确定相等关系列方程是解本题的关键.3、(1);(2),;(3),;,;,;,; ,;,【分析】(1)根据顶点的坐标,设抛物线的解析式为ya(x1)24,将点A(1,0)代入,求出a即可得出答案; 线 封 密 内 号学级年名姓 线 封 密 外 (2)利用待定系数法求出直线BD解析式为y2x6,过点C作CP1BD,交抛物线于点P1,再运用待定系数法求出直线CP1

16、的解析式为y2x3,联立方程组即可求出P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,证明OCEGCF(ASA),运用待定系数法求出直线CF解析式为yx3,即可求出P2(,);(3)利用待定系数法求出直线AC解析式为y3x3,直线BC解析式为yx3,再分以下三种情况:当QMN是以NQ为斜边的等腰直角三角形时,当QMN是以MQ为斜边的等腰直角三角形时,当QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可(1)解:顶点D的坐标为(1,4),设抛物线的解析式为ya(x1)24,将点A(1,0)代入,得0a(11)24,解得:a1,y(x1)24x22x3,该抛物

17、线的解析式为yx22x3;(2)解:抛物线对称轴为直线x1,A(1,0),B(3,0),设直线BD解析式为ykx+e,B(3,0),D(1,4),解得:,直线BD解析式为y2x6,过点C作CP1BD,交抛物线于点P1,设直线CP1的解析式为y2x+d,将C(0,3)代入,得320+d,解得:d3,直线CP1的解析式为y2x3,结合抛物线yx22x3,可得x22x32x3,解得:x10(舍),x24,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,OBOC,BOCOBGOCG90,四边形OBGC是正方形,设CP1与x轴交于点E,则2x30,解得:x,E(,0),在x轴下方作BC

18、FBCE交BG于点F,四边形OBGC是正方形,OCCGBG3,COEG90,OCBGCB45,OCBBCEGCBBCF,即OCEGCF,OCEGCF(ASA),FGOE, 线 封 密 内 号学级年名姓 线 封 密 外 BFBGFG3,F(3,),设直线CF解析式为yk1x+e1,C(0,3),F(3,),解得:,直线CF解析式为yx3,结合抛物线yx22x3,可得x22x3x3,解得:x10(舍),x2,P2(,),综上所述,符合条件的P点坐标为:(4,5)或(,);(3)解:(3)设直线AC解析式为ym1x+n1,直线BC解析式为ym2x+n2,A(1,0),C(0,3),解得:,直线AC解

19、析式为y3x3,B(3,0),C(0,3),解得:,直线BC解析式为yx3,设M(t,t3),则N(t,t22t3),MN|t22t3(t3)|t23t|,当QMN是以NQ为斜边的等腰直角三角形时,此时NMQ90,MNMQ,如图2,MQx轴,Q(t,t3),|t23t|t(t)|,t23tt,解得:t0(舍)或t或t, 线 封 密 内 号学级年名姓 线 封 密 外 ,;,;当QMN是以MQ为斜边的等腰直角三角形时,此时MNQ90,MNNQ,如图3,NQx轴,Q(,t22t3),NQ|t|t2+t|,|t23t|t2+t|,解得:t0(舍)或t5或t2,M3(5,2),Q3(5,12);M4(2

20、,1),Q4(0,3);当QMN是以MN为斜边的等腰直角三角形时,此时MQN90,MQNQ,如图4,过点Q作QHMN于H,则MHHN,H(t,),Q(,),QH|t|t2+5t|,MQNQ,MN2QH,|t23t|2|t2+5t|,解得:t7或1,M5(7,4),Q5(7,18);M6(1,2),Q6(0,3);综上所述,点M及其对应点Q的坐标为:,;,;M3(5,2),Q3(5,12);M4(2,1),Q4(0,3);M5(7,4),Q5(7,18);M6(1,2),Q6(0,3) 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题是二次函数综合题,主要考查了待定系数法求一次函数和二

21、次函数解析式,求一次函数与二次函数图象交点坐标,全等三角形判定和性质,正方形判定和性质,等腰直角三角形性质等,本题属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、等腰直角三角形性质等相关知识,运用数形结合思想、分类讨论思想是解题关键4、(1)(2)7【分析】(1)以中点为原点,建立平面直角坐标系,设,将点代入,待定系数法求解析式即可;(2)令,代入求得,即可求得E点到直线AB的距离(1)解:如图, C到AB的距离为9m,AB36m,设抛物线解析式为将点代入得解得(2) DE48m,则则求E点到直线AB的距离为7【点睛】本题考查了二次函数的应用,掌握二次函数的性质是解题的关键5、(1)见

22、解析 线 封 密 内 号学级年名姓 线 封 密 外 (2)2(3)存在,10【分析】(1)由正方形的性质得,故,由折叠的性质得,故,推出,故可证;(2)由,得,设,则,由勾股定理即可求出的值,即可求出,由相似三角形的性质即可得出的长;(3)过点作于,根据证明,由全等三角形的性质得,设,由勾股定理求出、关系,由化为二次函数即可求出最值(1)四边形是正方形,正方形沿Z折叠,;(2)正方形的边长为4,设,则,由勾股定理得:,解得:,即,解得:;(3)如图,过点作于,四边形是矩形,由折叠的性质可得:, 线 封 密 内 号学级年名姓 线 封 密 外 ,设,即,当时,有最大值为10【点睛】本题考查几何综合题,主要涉及到折叠的性质,正方形的性质,相似三角形性的判定与性质,全等三角形的判定与性质以及二次函数最值问题,属于中考压轴题,掌握相关知识点间的应用是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁