模拟真题2022年河北保定中考数学模拟定向训练-B卷(含答案详解).docx

上传人:可****阿 文档编号:30766699 上传时间:2022-08-06 格式:DOCX 页数:21 大小:464.35KB
返回 下载 相关 举报
模拟真题2022年河北保定中考数学模拟定向训练-B卷(含答案详解).docx_第1页
第1页 / 共21页
模拟真题2022年河北保定中考数学模拟定向训练-B卷(含答案详解).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《模拟真题2022年河北保定中考数学模拟定向训练-B卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《模拟真题2022年河北保定中考数学模拟定向训练-B卷(含答案详解).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北保定中考数学模拟定向训练 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式成立的是( )ABCD2、石景山某中学初三班环保小组的同

2、学,调查了本班名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个),若一个塑料袋平铺后面积约为,利用上述数据估计如果将全班名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( )ABCD3、实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的有( )b+c0;a+ba+c;bcac;abacA1个B2个C3个D4个4、若分式有意义,则的取值范围是( )ABCD5、下列说法正确的是( )A带正号的数是正数,带负号的数是负数.B一个数的相反数,不是正数,就是负数.C倒数等于本身的数有2个.D零除以任何数等于零.6、以下四个选项表示某天四个城市的平均气温,其中平均气温最高的是(

3、)ABCD7、有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种8、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD9、如图,是的边上的中线,则的取值范围为( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD10、下列计算: 0(5)=0+(5)=5; 534=512=7; 43()=4(1)=4; 122(1)2=1+2=3其中错误的有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,半圆O的直径AE4,点B,C,D均在半圆上若AB

4、BC,CDDE,连接OB,OD,则图中阴影部分的面积为_.2、若直角三角形的两条直角边长分别为cm,cm,则这个直角三角形的斜边长为_cm,面积为_ .3、的最简公分母是_4、已知,那么它的余角是_,它的补角是_5、已知与互为相反数,则的值是_三、解答题(5小题,每小题10分,共计50分)1、如图,足球场上守门员在处开出一高球,球从离地面米的A处飞出(A在轴上),运动员乙在距点米的处发现球在自己头的正上方达到最高点,距地面约米高,球落地后又一次弹起,根据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半(1)求足球开始飞出到第一次落地时,该抛物线的表达式;

5、(2)足球第一次落地点距守门员多少米?(3)运动员乙要抢到足球第二个落点,他应从处再向前跑多少米?2、已知:二次函数图象的顶点坐标为,且经过点;求此二次函数的解析式3、已知关于x的一元二次方程+ax+a+30(1)求证:无论a为任何实数,此方程总有两个不相等的实数根;(2)如图,若抛物线y+ax+a+3与x轴交于点A(2,0)和点B,与y轴交于点C,连结BC,BC与对称轴交于点D求抛物线的解析式及点B的坐标;若点P是抛物线上的一点,且点P位于直线BC的上方,连接PC,PD,过点P作PNx轴,交BC于点M,求PCD的面积的最大值及此时点P的坐标 线 封 密 内 号学级年名姓 线 封 密 外 4、

6、已知抛物线yx2+x(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;(2)已知该抛物线经过A(3n+4,y1),B(2n1,y2)两点若n5,判断y1与y2的大小关系并说明理由;若A,B两点在抛物线的对称轴两侧,且y1y2,直接写出n的取值范围5、已知抛物线(1)求证:对任意实数m,抛物线与x轴总有交点(2)若该抛物线与x轴交于,求m的值-参考答案-一、单选题1、D【分析】根据分式的基本性质进行判断.【详解】解:A、分子、分母同时除以-1,则原式=,故本选项错误; B、分子、分母同时乘以-1,则原式=,故本选项错误; C、分子、分母同时除以a,则原式= ,故本选项错误; D、分子、

7、分母同时乘以b,则原式=,故本选项正确.故选D.【点睛】本题考查了分式的基本性质.特别要注意:分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.2、D【分析】先求出每一名学生自己家中一周内丢弃的塑料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平铺后面积那么全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开所占面积即可求出【详解】由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为=10个,则每名同学丢弃的塑料袋平铺后面积约为100.25m2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为402.5=100m2故选D【点睛】本题考查了用样本的数

8、据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法3、B 线 封 密 内 号学级年名姓 线 封 密 外 【详解】试题解析:由数轴可得c0ba,且a|c|b, b+c0,应为b+c0,故不正确; a+ba+c,正确; bcac,应为bcac,故不正确; abac,正确 共2个正确 故选B考点:实数与数轴4、A【解析】试题解析:根据题意得:3-x0,解得:x3.故选A.考点:分式有意义的条件.5、C【分析】利用有理数的定义判断即可得到结果【详解】解:A、带正号的数不一定为正数,例如+(-2);带负号的数不一定为负数,例如-(-2),故错误;B、一个数的相反数,不是

9、正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和-1,正确;D、零除以任何数(0除外)等于零,故错误;故选C【点睛】本题考查有理数的除法,以及正负数、倒数以及相反数,掌握它们的性质是解题的关键6、D【分析】根据负数比较大小的概念逐一比较即可【详解】解析:故选:【点睛】本题主要考查了正负数的意义,熟悉掌握负数的大小比较是解题的关键7、B【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;

10、半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个 线 封 密 内 号学级年名姓 线 封 密 外 故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆8、C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,也是中心对称图形,故本选项符合题意;D是

11、轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合9、C【分析】延长至点E,使,连接,证明,可得,然后运用三角形三边关系可得结果【详解】如图,延长至点E,使,连接为的边上的中线,在和中,在中,即,故选:C【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 10、C【分析】根据有理数的减法法则可判断;先算乘法、再算减法,可判断;根据有理数的乘

12、除运算法则可判断;根据有理数的混合运算法则可判断,进而可得答案.【详解】解:,所以运算错误;,所以运算正确;43()=4()=,所以运算错误;122(1)2=121=3,所以运算错误综上,运算错误的共有3个,故选:C.【点睛】本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.二、填空题1、【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解【详解】如图,连接CO,AB=BC,CD=DE,BOC+COD=AOB+DOE90,AE=4,AO=2,S阴影【点睛】本题考查了扇形的面积计算及圆心角、弧之间的关系解答本题的关键是得出阴影部分

13、的面积等于扇形BOD的面积2、 【详解】试题解析:由勾股定理得,直角三角形的斜边长=cm;直角三角形的面积=cm2故答案为3、【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:的分母分别是xy、4x3、6xyz,故最简公分母是故答案为【点睛】本题考查了最简公分母的定义及求法通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母一般方法:如果各分母都是单项式,那么最简公分母

14、就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂4、 【分析】根据余角、补角的性质即可求解【详解】解:,故答案为,【点睛】此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键5、【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可【详解】解:与互为相反数,+=0, 故答案为:【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得与之间的关系是解题关键三、解答题1、(1)y=-(x-6)2

15、+5(2)足球第一次落地点C距守门员米(3)运动员乙要抢到足球第二个落点D,他应再向前跑米【分析】(1)由条件可以得出M(6,5),设抛物线的解析式为y=a(x-6)2+5,由待定系数法求出其解即可; (2)当y=0时代入(1)的解析式,求出x的值即可; (3)根据题意得到CD=EF,由-(x-6)2+5=2求出EF的长度,就可以求出OD的值,进而得出结论(1) 线 封 密 内 号学级年名姓 线 封 密 外 解:根据题意,可设第一次落地时,抛物线的表达式为y=a(x-6)2+5,将点A(0,1)代入,得:36a+5=1,解得:a=-,足球开始飞出到第一次落地时,该抛物线的表达式为y=-(x-6

16、)2+5;(2)解:令y=0,得:-(x-6)2+5=0,解得:x1=,x2=(舍去),答:足球第一次落地点C距守门员米;(3)解:如图,足球第二次弹出后的距离为CD,根据题意知CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),-(x-6)2+5=2,解得:x1=,x2=,CD=x2-x1=,BD=BC+CD=米,答:运动员乙要抢到足球第二个落点D,他应再向前跑米【点睛】本题考查了运用顶点式及待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,二次函数的性质的运用,解答时求出函数的解析式是关键2、【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:,再把代入,求出的值,即

17、可得出二次函数的解析式【详解】解:设抛物线的解析式为:,把代入解析式得,则抛物线的解析式为:【点睛】本题主要考查了用待定系数法求二次函数解析式,解题的关键是掌握在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式3、(1)见解析;(2)y=,点B(4,0);PCD的面积的最大值为1,点P(2,4)【分析】(1)判断方程的判别式大于零即可;(2)把A(-2,0)代入解析式,确定a值即可求得抛物线的解析式,令y=0,求得对应一元二次方程的根即可确定点B的坐标; 线 封 密 内 号学级年名姓 线 封 密 外 设点P的坐标为(x,),确定直线BC的解析式y=kx+b,确定M的坐标(x,kx+b

18、),求得PM=-(kx+b),从而利用C,D的坐标表示构造新的二次函数,利用配方法计算最值即可(1),=0,无论a为任何实数,此方程总有两个不相等的实数根(2)把A(-2,0)代入解析式,得,解得a=1,抛物线的解析式为,令y=0,得,解得x=-2(A点的横坐标)或x=4,点B(4,0);设直线BC的解析式y=kx+b,根据题意,得,解得,直线BC的解析式为y=-x+4;抛物线的解析式为,直线BC的解析式为y=-x+4;设点P的坐标为(x,),则M(x,),点N(x,0),PM=-()=,抛物线的对称轴为直线x=1,点D(1,3),=,当x=2时,y有最大值1,此时=4, 线 封 密 内 号学

19、级年名姓 线 封 密 外 PCD的面积的最大值为1,此时点P(2,4)【点睛】本题考查了待定系数法确定二次函数,一次函数的解析式,一元二次方程根的判别式,抛物线与x轴的交点,二次函数的最值,分割法求图形的面积,熟练掌握待定系数法,灵活构造二次函数是解题的关键4、(1)直线x1,(0,0)(2)y1y2,理由见解析;1n【分析】(1)由对称轴公式即可求得抛物线的对称轴,令x0,求得函数值,即可求得抛物线与y轴的交点坐标;(2)由n5,可得点A,点B在对称轴直线x1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解(1)yx2+x,对称轴为直线x1,令x0,则y0,抛物线与y

20、轴的交点坐标为(0,0);(2)xAxB(3n+4)(2n1)n+5,xA1(3n+4)13n+33(n+1),xB1(2n1)12n22(n1)当n5时,xA10,xB10,xAxB0A,B两点都在抛物线的对称轴x1的左侧,且xAxB,抛物线yx2+x开口向下,在抛物线的对称轴x1的左侧,y随x的增大而增大y1y2;若点A在对称轴直线x1的左侧,点B在对称轴直线x1的右侧时,由题意可得,不等式组无解,若点B在对称轴直线x1的左侧,点A在对称轴直线x1的右侧时,由题意可得:,1n,综上所述:1n【点睛】本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键5、(1)见解析(2)【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)令,得到关于的一元二次方程,根据一元二次方程根的判别式判断即可;(2)令,解一元二次方程即可求得的值(1)令,则有即,对于任意实数方程总有两个实数根,对任意实数m,抛物线与x轴总有交点(2)解:抛物线与x轴交于,解得【点睛】本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁