《难点详解北师大版八年级数学下册第三章图形的平移与旋转定向攻克试卷(精选).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版八年级数学下册第三章图形的平移与旋转定向攻克试卷(精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B轴轴对称C轴轴对称D以上都不对2、下列
2、图形中,既是轴对称图形又是中心对称图形的是()ABCD3、如图,将ABC绕点A按逆时针方向旋转得到使点恰好落在BC边上,BAC120,则C的度数为()A18B20C24D284、在平面直角坐标系中,若点与点关于原点对称,则点在( )A第一象限B第二象限C第三象限D第四象限5、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD6、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A
3、2B2C3D37、下列图形中,是中心对称图形的是( )ABCD8、2022年2月4日2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转( )A180B120C90D609、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A可回收物B有害垃圾C厨余垃圾D其他垃圾10、下列说法正确的是( )A能够互相重合的两个图形成轴对称B图形的平移运动由移动的
4、方向决定C如果一个旋转对称图形有一个旋转角为120,那么它不是中心对称图形D如果一个旋转对称图形有一个旋转角为180,那么它是中心对称图形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系内,点A(a,3)与点B(1,b)关于原点对称,则a+b的值_2、在平行四边形ABCD中,点A关于对角线的交点O的对称点_3、已知点A(9,a)和点B(b,2)关于原点对称,则a+b=_4、如图,ABC中,ACB90,A30,将ABC绕C点按逆时针方向旋转角(090)得到DEC,设CD交AB于F,连接AD,当旋转角度数为_,ADF是等腰三角形5、如图,将三角形ABC绕点A
5、按逆时针方向旋转100得到三角形ABC,连接BB,则A BB的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90后得到的A2B2C22、图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,的三个顶点坐标分别为,(1)画出关于x轴对称的;(2)画出绕点O顺时针旋转90后得到的3、如图1,D为等边ABC内一点
6、,将线段AD绕点A逆时针旋转60得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F(1)求证:BDCE;(2)如图2,连接FA,小颖对该图形进行探究,得出结论:BFCAFBAFE小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由4、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.(1)请写出ABC各点的坐标A B C ;(2)若把ABC向上平移2个单位,再向右平移2个单位得,在图中画出,(3)求ABC 的面积5、如图,在等腰直角中,点D,E在边BC上,且,将绕点A逆时针旋转90得到,连接EF(1)求证:(2)若,求CE-参考答案-一、
7、单选题1、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称故选A【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键2、D【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,不是中心对称图形,故本选项符合题意;D既是轴对称图形,又是中心对称图形,故本选项不符合题意故选:D【点睛】本题考查
8、了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合3、B【分析】由,根据等边对等角可得C=CAB,个三角形的外角的性质可得,ABB=C+CAB=2C,由旋转的性质可得AB=AB,进而可得B=ABB=2C,根据三角形的内角和定理可得B+C+CAB=180,进而求得C=20.【详解】解:AB=CB,C=CAB,ABB=C+CAB=2
9、C,旋转得AB=AB,B=ABB=2C,B+C+CAB=180,3C=180-120,C=20.故选B【点睛】本题考查旋转的性质以及等腰三角形的性质,灵活运用这些的性质解决问题是解答本题的关键4、B【分析】根据点(x,y)关于原点对称的点的坐标为(x,y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答【详解】解:点与关于原点对称,m=-2,m-n=3,n=1,点M(-2,1)在第二象限,故选:B【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键5、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中
10、心对称图形,故此选项不合题意;B不是轴对称图形,是中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此选项合题意;D不是轴对称图形,也不是中心对称图形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合6、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵
11、坐标均互为相反数是解决此题的关键7、A【详解】解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键8、D【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60,即可解决问题【详解】解:“雪花图案”可以看成正六边形,正六边形的中心角为60,这个图案至少旋转60能与原
12、雪花图案重合故选:D【点睛】本题考查旋转对称图形,生活中的旋转现象等知识,解题的关键是理解题意,掌握正六边形的性质9、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转1
13、80度后与原图重合10、D【分析】根据图形变换的意义和性质作答【详解】解:A、一个图形沿着某条直线翻折后能够与另一个图形重合,则两个图形关于某条直线成轴对称,错误;B、图形的平移运动由移动的方向和距离决定,错误;C、如果一个旋转对称图形,有一个旋转角为120度,那么它也有可能有一个旋转角为180度,所以它有可能是中心对称图形,错误;D、如果一个旋转对称图形有一个旋转角为180度,那么它一定是中心对称图形,正确;故选D【点睛】本题考查图形变换的应用,熟练掌握轴对称、平移、中心对称的定义和性质是解答关键二、填空题1、2【分析】根据点关于原点对称的坐标特点即可完成【详解】点A(a,3)与点B(1,b
14、)关于原点对称 故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键2、C【分析】根据平行四边形是中心对称图形和中心对称图形的性质解答【详解】如图所示:因为平行四边形是中心对称图形,所以点A关于对角线的交点O的对称点是点C故答案为:C【点睛】考查了中心对称图形的性质,解题关键是熟记中心对称图形的性质3、7【分析】根据两点关于原点对称的坐标特征,可求得a与b的值,从而可求得a+b的值【详解】点A(9,a)和点B(b,2)关于原点对称a=2,b=9a+b=2+(9)=7故答案为:7【点睛】本题考查了关于原点对称的两点的
15、坐标特征,求代数式的值,关键是掌握两点关于原点对称的坐标特征:横坐标互为相反数,纵坐标也互为相反数4、40【分析】根据旋转的性质可得AC=CD,根据等腰三角形的两底角相等求出ADF=DAC,再表示出DAF,根据三角形的一个外角等于与它不相邻的两个内角的和表示出AFD,然后分ADF=DAF,ADF=AFD,DAF=AFD三种情况讨论求解【详解】解:ABC绕C点逆时针方向旋转得到DEC,AC=CD,ADF=DAC=(180-),DAF=ADC-BAC=(180-)-30,根据三角形的外角性质,AFD=BAC+DAC=30+,ADF是等腰三角形,分三种情况讨论,ADF=DAF时,(180-)=(18
16、0-)-30,无解;ADF=AFD时,(180-)=30+,解得=40,DAF=AFD时,(180-)-30=30+,解得=20,综上所述,旋转角度数为20或40故答案为:20或40【点睛】本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论5、40【分析】根据旋转角的定义求出大小,再利用旋转的性质,求证,最后通过等腰三角形性质进行求解【详解】解:由旋转角定义可知:,由旋转性质可知:与为对应边,故,为等腰三角形, 故答案为:40【点睛】本题主要是考察了旋转的相关知识点,利用旋转角的定义求出某些角的度数,以及旋转前后对应边相等进行解题,
17、是解决此类问题的关键三、解答题1、(1)(4,1);(2)见解析;(3)见解析【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90后得到对应点,再首尾顺次连接即可【详解】(1)点B关于原点对称的点B的坐标为(4,1),故答案为:(4,1);(2)如图所示,A1B1C1即为所求(3)如图所示,A2B2C2即为所求【点睛】本题主要考查作图平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点2、(1)见解
18、析;(2)见解析【分析】(1)画出ABO关于x轴对称的A1B1O即可;(2)画出ABO绕点O逆时针旋转90后的A2B2O即可;【详解】解:ABO关于x轴对称的A1B1O如图所示;ABO绕点O逆时针旋转90后的A2B2O如图所示;【点睛】本题考查了作图-旋转变换、轴对称变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键3、(1)见解析;(3)正确,见解析【分析】(1)根据旋转的性质可得ADAE,DAE60,结合已知条件可得BACDAE,进而证明ABDACE,即可证明BDCE;(2)过A作BD,CF的垂线段分别交于点M,N,ABDACE,BDCE,由面积相等可得AMAN,证明RtAFMRtA
19、FN,进而证明BFCAFBAFE60【详解】解:证明:(1)如图1,线段AD绕点A逆时针旋转60得到AE,ADAE,DAE60,BAC60,BACDAE,BADCAE,在ABD和ACE中,ABDACE(SAS),BDCE,(2)由(1)可知ABDACE则ABDACE,又AGBCGF,BFCBAC60,BFE120,过A作BD,CF的垂线段分别交于点M,N,又ABDACE,BDCE,由面积相等可得AMAN,在RtAFM和RtAFN中,RtAFMRtAFN(HL),AFMAFN,BFCAFBAFE60【点睛】本题考查了三角形全等的性质与判定,旋转的性质,正确的添加辅助线找到全等三角形并证明是解题的
20、关键4、(1);(2)见解析;(3)7【分析】(1)根据平面直角坐标系直接写出点的坐标即可;(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)根据长方形减去三个三角形的面积即可求得ABC 的面积【详解】(1)根据平面直角坐标系可得故答案为:(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)的面积等于【点睛】本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键5、(1)见解析;(2)3【分析】(1)根据旋转的性质,可得BAD=CAF,AD=AF,再由,可得EAF=45,从而得到EAF=DAE,进而得到DAEFAE,即可求证;(2)根据旋转的
21、性质,可得B=ACF,CF=BD=4,再由等腰直角三角形的性质可得B=ACB=45,从而得到ACF=45, ,进而得到ECF=90,再由,可得EF=8-CE,然后在 中,由勾股定理,即可求解【详解】解:(1)将绕点A逆时针旋转90得到,BAD=CAF,AD=AF,BAD+CAE=BAC-DAE=45,CAF+CAE=BAC-DAE=45,即EAF=45,EAF=DAE,AE=AE,DAEFAE,DE=EF;(2)将绕点A逆时针旋转90得到,B=ACF,CF=BD=4,在等腰直角中,B=ACB=45,ACF=45, ,ECF=ACB+ACF=90,BD=4,DE+CE=8,DE=EF,EF+CE=8,EF=8-CE,在 中, , ,解得: 【点睛】本题主要考查了全等三角形的判定和性质,图形的旋转,勾股定理,等腰直角三角形的性质,熟练掌握相关知识点是解题的关键