《难点详解京改版八年级数学下册第十四章一次函数定向测评试题(精选).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十四章一次函数定向测评试题(精选).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据时间/分钟0510152025温度/
2、102540557085若温度的变化是均匀的,则18分钟时的温度是( )A62B64C66D682、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )ABCD3、如图,一次函数yax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A关于x的不等式ax+b0的解集是x2B关于x的不等式ax+b0的解集是x2C关于x的方程ax+b0的解是x4D关于x的方程ax+b0的解是x24、点P的坐标为(3,2),则点P位于( )A第一象限B第二象限C第三象限D第四象限5、关于函数有下列结论,其中正确的是( )A图象经过点B若、在图象上,则C当时,D图象向上平移1个单位
3、长度得解析式为6、已知为第四象限内的点,则一次函数的图象大致是( )ABCD7、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为()A(4,3)B(3,4)C(3,4)D(3,4)8、已知一次函数y=kx+b的图象经过点A(2,0),且当x2时,y0,则该函数图象所经过的象限为()A一、二、三B二、三、四C一、三、四D一、二、四9、已知一次函数y=kx+b的图象如图所示,则一次函数y=bx+k的图象大致是( )ABCD10、已知点P(m3,2m4)在x轴上,那么点P的坐标为()A(1,0)B(1,0)C(2,0)D(2,0)第卷(非选择题 70分)二、填空题(5小题,每小题4
4、分,共计20分)1、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200剩余油量Q(升)4035302520则该汽车每行驶100千米的耗油量为 _升2、任何一个以x为未知数的一元一次不等式都可以变形为_(a0)的形式,所以解一元一次不等式相当于在某个一次函数_的值大于0或小于0时,求_的取值范围3、已知一次函数的图象与两坐标轴围成的三角形面积为4,则_4、关于x的正比例函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是_5、将一次函数的图像沿x轴向左平移4个单位长度,所得到的图像对应的函数表达式是_三、解答
5、题(5小题,每小题10分,共计50分)1、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示根据图象解答下列问题(1)甲、乙两地之间的距离为_km,线段AB的解析式为_两车在慢车出发_小时后相遇;(2)设慢车行驶时间x(0x6,单位:h),快、慢车之间的距离为S(km)当两车之间距离S300km时,求x的值;图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据)2、如图1,直线的解析式为
6、,点坐标为,点关于直线的对称点点在直线上(1)求直线的解析式;(2)如图2,在轴上是否存在点,使与的面积相等,若存在求出点坐标,若不存在,请说明理由;(3)如图3,过点的直线当它与直线夹角等于45时,求出相应的值3、某经销商用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元(1)求一件A,B型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该经销商销售
7、这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益4、已知函数y=(m-3)x+(m2-9),当m取何值时,y是x的正比例函数?5、如图所示,平面直角坐标系中,直线AB交x轴于点B(3,0),交y轴于点A(0,1),直线x=1交AB于点D,P是直线x=1上一动点,且在点D上方,设P(1,n)(1)求直线AB的解析式;(2)求ABP的面积(用含n的代数式表示);(3)点C是y轴上一点,当SABP=2时,BPC是等腰三角形,满足条
8、件的点C的个数是_个(直接写出结果);当BP为等腰三角形的底边时,求点C的坐标-参考答案-一、单选题1、B【解析】【分析】根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,代入解析式求解确定函数解析式,然后将代入求解即可得【详解】解:根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,代入解析式可得:,解得:,温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,当时,故选:B【点睛】题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键2、C【解析】【分析】因为正比例函数的函数值随的
9、增大而减小,可以判断;再根据判断出的图象的大致位置【详解】解:正比例函数的函数值随的增大而减小,一次函数的图象经过一、三、四象限故选C【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题一次函数的图象有四种情况:当,时,函数的图象经过第一、二、三象限;当,时,函数的图象经过第一、三、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限3、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案【详解】解:A、由图象可知,关于x的不等式ax+b0的解集是x2,故不符合题意;B、由图象可知,关于x的不等式ax+b0的解集是x2,故不符合
10、题意;C、由图象可知,关于x的方程ax+b0的解是x2,故不符合题意;D、由图象可知,关于x的方程ax+b0的解是x2,符合题意;故选:D【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解4、B【解析】【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可【详解】解:点P的坐标为(3,2),则点P位于第二象限故选:B【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标
11、为负,纵坐标为负;第四象限横坐标为正,纵坐标为负5、D【解析】【分析】根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项【详解】解:A、当x=-1时,则有y=-2(-1)-2=0,故点不在一次函数的图象上;不符合题意;B、,y随x的增大而减小,若、在图象上,则有,即,故不符合题意;C、当y=0时,则有-2x-2=0,解得x=-1,所以当x-1时,y0,则当时,故不符合题意;D、图象向上平移1个单位长度得解析式为,正确,故符合题意;故选D【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键6、A【解析】【分析】根据为第四象限内的点,可得 ,从而得到 ,进而
12、得到一次函数的图象经过第一、二、三象限,即可求解【详解】解:为第四象限内的点, , ,一次函数的图象经过第一、二、三象限故选:A【点睛】本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键7、C【解析】【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标【详解】P点到x、y轴的距离分别是4、3,点P的纵坐标绝对值为4、横坐标的绝对值为3,点P在第二
13、象限内,点P的坐标为(3,4),故选:C【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值8、D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论【详解】解:如图,一次函数y=kx+b的图象经过点A(2,0),且当x2时,y0,该函数图象所经过一、二、四象限,故选:D【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键9、D【解析】【分析】根据题目中的一次函数图像判断出、的正负,进而确定y=bx+k的参数正负,最后根
14、据一次函数图像与参数的关系,找出根据符题意的图像即可【详解】解:由题意及图像可知:,y=bx+k中的,由一次函数图像与参数的关系可知:D选项符合条件,故选:D【点睛】本题主要是考查了一次函数图像与参数的关系,熟练掌握参数的正负与函数图像的关系,是解决该题的关键10、B【解析】【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可【详解】解:点P(m3,2m4)在x轴上,2m40,解得:m2,m3231,点P的坐标为(1,0)故选:B【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键二、填空题1、10【解析】【分析】根据表格中两个变量的变化关系得出函数关系式即可【详解】解:根
15、据表格中两个变量的变化关系可知,行驶路程每增加50千米,剩余油量就减少5升,所以行驶路程每增加100千米,剩余油量就减少10升,故答案为:10【点睛】本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提2、 ax+b0或ax+b0或ax+b0或ax+b-2【解析】【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可【详解】解:正比例函数中,y随x的增大而增大,0,解得故答案为;【点睛】本题考查的是正比例函数的性质,即正比例函数y=kx(k0)中,当k0时,y随x的增大而增大5、#y=4+2x【解析】【分析】根据一次函数的平移规律:“上加下减,左加右减”来解题即
16、可【详解】由一次函数的图象沿x轴向左平移4个单位后,得到的图象对应的函数关系式为,化简得:,故答案为:【点睛】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意一次函数的平移规律:“上加下减,左加右减”三、解答题1、(1)450;y1150x+450,2;(2)或4;见解析【解析】【分析】(1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;(2)根据题意得出函数解析式为S,把S300代入解析式分别求出x的值即可;根据题意得出函数解析式,画出函数的图象即可【详解】
17、解:(1)由图象可得:甲、乙两地之间的距离为450km;设线段AB的解析式为y1k1x+b1,A(0,450),B(3,0),解得:,线段AB的解析式为y1450150x(0x3);设两车在慢车出发x小时后相遇,()x=450,解得:x2,答:两车在慢车出发2小时后相遇故答案为:450;y1150x+450;2;(2),根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S,当0x2时,S=450x=300,解得:x,当2x3时,S=x=300,解得:x=(舍去),当3x6时,S=75x=300,解得:x=4,综上所述:x的值为或4其图象为折线图如下:【点睛】本题考查一次函数的应用及待定系数
18、法求一次函数解析式,从函数图象中正确得出所需信息是解题关键2、故答案为:b;(a-2b)2;b(a-2b)(2)解:当b=3cm, a-2b=20-6=14cm,b(a-2b)2=3142=588cm3,当b=4,a-2b=20,8=12cm,b(a-2b)2=4122=576cm3,故答案为:588;576(3)解:随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积先变大,再变小故选择C(4)根据无盖长方体盒子的容积的变化,截去的正方形边长在3cm时,无盖长方体盒子的容积3、 (1)一件B型商品的进价为150元,则一件A型商品的进价为160元;(2);(3)当时,该经销商售完所有商品并
19、捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【解析】【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为元根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润两种商品的利润之和,列出式子即可解决问题;(3)设利润为元则,分三种情形讨论利用一次函数的性质即可解决问题(1)解:设一件B型商品的进价为x元,则一件A型商品的进价为元,由题意:,解得,经检验是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的
20、进价为160元;(2)解:客商购进A型商品m件,客商购进B型商品件,由题意:,A型商品的件数不大于B型的件数,且不小于80件,;(3)解:设收益为元,则,当时,即时,w随m的增大而增大,当时,最大收益为元;当,即时,最大收益为17500元;当时,即时,w随m的增大而减小,时,最大收益为元,当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键4、
21、-3【解析】【分析】根据正比例函数定义即可求解【详解】解:y=(m-3)x+(m2-9)是正比例函数,m2-9=0且m-30,m=【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义“形如(k为常数,且k0)的函数叫正比例函数”是解题关键 5、(1)y=x+1;(2)n1;(3)3;C(0,1)【解析】【分析】(1)设直线AB的解析式为y=kx+b,用待定系数法求解;(2)先表示出PD的长,然后根据ABP的面积=APD的面积+BPD的面积=求解;(3)先根据SABP=2求出n,求出BP的长,然后可确定点C的位置;设C(0,c),根据PC=BC可求出c的值【详解】解:(1)设直线AB的解析式
22、为y=kx+b,把A(0,1),B(3,0)代入,得,解得,;(2)当x=-1时,P(1,n),PD=,ABP的面积=APD的面积+BPD的面积=;(3)由题意得=2,解得n=2,P(-1,2),PE=2,BE=3-1=2,BP=,BPOB,如图,以点P为顶点的等腰三角形有2个,以点C为顶点的等腰三角形有1个,所以满足条件的点C的个数是3个,故答案为:3;设C(0,c),P(-1,2),B(3,0),PC2=,BC2=,当PC=BC时,c2-4c+5= c2+9,c=-1,C(0,-1)【点睛】本题考查了待定系数法求一次函数解析式,坐标与图形的性质,等腰三角形的性质,勾股定理等知识,熟练掌握待定系数法、勾股定理是解答本题的关键