《难点详解京改版八年级数学下册第十四章一次函数专项测评练习题.docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十四章一次函数专项测评练习题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点(1,y1)、(2,y2)在函数y2x+1图象上,则y1与y2的大小关系是( )Ay1y2By1y2Cy1
2、=y2D无法确定2、下列函数中,y随x的增大而减小的函数是( )ABy62xCDy62x3、已知点P(m3,2m4)在x轴上,那么点P的坐标为()A(1,0)B(1,0)C(2,0)D(2,0)4、已知点A(x,5)在第二象限,则点B(x,5)在( )A第一象限B第二象限C第三象限D第四象限5、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )Ay1y2By1y2Cy1y2Dy1y26、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )ABC3D7、下列命题中,真命题是( )A若
3、一个三角形的三边长分别是a、b、c,则有B(6,0)是第一象限内的点C所有的无限小数都是无理数D正比例函数()的图象是一条经过原点(0,0)的直线8、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )ABCD9、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是()A BC D10、在平面直角坐标系中,任意两点,规定运算:,;当,且时,有下列三个命题:(1)若,则,;(2)若,则;(3)对任意点,
4、均有成立其中正确命题的个数为( )A0个B1个C2个D3个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果正比例函数y(k2)x的图象经过第二、四象限,那么k的取值范围是 _2、A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,如图,l1,l2表示两人离A地的距离:s(km)与时间t(h)的关系,则乙出发_h两人恰好相距5千米3、一次函数的图象经过第一、三、四象限,则k的取值范围是_4、先设出_,再根据条件确定解析式中_,从而得出函数解析式的方法,叫待定系数法5、任何一个以x为未知数的一元一次不等式都可以变形为_(a0)的形式,所以解一元一次不等式相当
5、于在某个一次函数_的值大于0或小于0时,求_的取值范围三、解答题(5小题,每小题10分,共计50分)1、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球()A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:A商场:买一盒大气球,送一盒小气球;B商场:一律九折优惠;(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?2、在如图所示的正方形网格中,每个小正方形的边长都是1,ABC的顶点都在正方形网
6、格的格点(网格线的交点)上(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);(2)请画出ABC关于y轴对称的图形A1B1C1,并写出点B1的坐标为 ;(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 3、已知函数y=(k-3)xk+2是正比例函数,求代数式k2-1的值4、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OAOBm,OCn,满足m212m36(n2)20,作BDAC于D,BD交OA于E(1)如图1,求点B、C的坐标;(2)如图2,动点P从B点出发,以每秒2个单位的速度沿x
7、轴向右运动,设点P运动的时间为t,PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;(3)如图3,在(2)的条件下,当t6时,在坐标平面内是否存在点F,使PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由5、高斯记号表示不超过x的最大整数,即若有整数n满足,则当时,请画出点的纵坐标随横坐标变化的图象,并说明理由-参考答案-一、单选题1、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据12即可得出结论【详解】解:一次函数y2x1中,k20,y随着x的增大而减小点(1,y1)、(2,y2)是一次函数y2x1图象上的两个点,12,y1y
8、2故选:A【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键2、B【解析】【分析】根据一次函数的性质,时,y随x的增大而增大;时,y随x的增大而减小;即可进行判断【详解】解:A、k0,y随x的增大而增大,故本选项错误;B、k20,y随x的增大而减小,故本选项正确;C、k0,y随x的增大而增大,故本选项错误;D、k20,y随x的增大而增大,故本选项错误故选:B【点睛】本题考查了一次函数的性质,解题的关键是掌握 时,y随x的增大而增大; 时,y随x的增大而减小3、B【解析】【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可【详解】解:点P(m3,2m
9、4)在x轴上,2m40,解得:m2,m3231,点P的坐标为(1,0)故选:B【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键4、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案【详解】点A(x,5)在第二象限,x0,x0,点B(x,5)在四象限故选:D【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)5、A【解析】【分析】先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答
10、即可.【详解】解:一次函数y=mx+n的图象经过第一、二、四象限,m0y随x增大而减小,10或ax+b0或ax+b0或ax+b0;y=ax+b;自变量【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k0)在x轴上(或下)方部分所有的点的横坐标所构成的集合三、解答题1、(1)A:y=10x+160,B:y=9x+180;(2)A商场更合算【解析】【分析】(1)利用购买大气球盒数单价+小气球去掉赠送的还需购买的盒数单价列函数关系得出A商场花费,用购买大气球盒数单
11、价+小气球购买的盒数单价之和九折列函数关系得出B商场花费即可;(2)先求A、B两商场花费函数的值,比较大小即可【详解】解:(1)A:y=504+10(x-4)=10x+160,B:y=(504+10x)90%=9x+180; (2)当时,A:1010+160=260元,B:910+180=270元,260270,选择在A商场购买比较合算【点睛】本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键2、(1)见详解;(2)A1B1C1即为所求,见详解,(-2,1);(3)(0,3)【解析】【分析】(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在
12、A的下方3个单位,建立直角坐标系即可;(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为A1B1C1;(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证GBC1为等腰直角三角形,再证PHB为等腰直角三角形,最后求出y轴交点坐标即可【详解】解:(1)点A坐标为(1 ,3
13、),点B坐标为(2 ,1)点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,如图所示:即为作出的平面直角坐标系;(2)根据图形得出出点C(4,7)ABC关于y轴对称的图形A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,A(1,3),B (2,1),C(4,7),A1(-1,3),B1(-2,1),C1(-4,7),在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),顺次连接A1B1, B1C1, C1 A1,如图所示:A1B1C1即为所求,故答案为:(-2,1);(3)如图所示:点P即为所求作的点过C1作y轴平行线与过B作
14、x轴平行线交于G,BG交y轴于H,点C的对称点为C1,连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,B(2,1),C1(-4,7),C1G=7-1=6,BG=2-(-4)=6,C1G=BG,GBC1为等腰直角三角形,GBC1=45,OHB=90,PHB为等腰直角三角形,yP-1=2-0,解得yP=3,点P(0,3)故答案为(0,3)【点睛】本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键3、0【解析】【分析】根据正比例函数y=kx的定义条件:k为常数且k0,
15、自变量指数为1,得出k值,代入代数式求解即可【详解】解:函数y=(k-3)xk+2是正比例函数,k+2=1且k-30,解得:k=-1,k2-1=(-1)2-1=0【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义是解题关键4、(1)B(6,0),C(2,0);(2)S82t(0t4),S2t8(t4);(3)存在,F(4,4)或F(2,2)【解析】【分析】(1)根据平方的非负性,求得,即可求解;(2)根据OACOBE求得,分段讨论,分别求解即可;(3)分两种情况讨论,当在的上方或在的下方,分别求解即可【详解】解:(1),m60,n20m6,n2B(6,0),C(2,0)(2)BDAC,A
16、OBC BDCBDA90,AOBAOC90OACOCA90,OBEOCA90OACOBE OACOBE(AAS)OCOE2当0t4时,BP2t,PC82t,SPCOE(82t)282t;当t4时,BP2t,PC2t8,SPCOE(2t8)22t8;(3)当t6时,BP12OBOP6当F在EP上方时,作FMy轴于M,FNx轴于NFMEFNP90MFNEFP90MFENFPFEFPMENP,FMFNMOON2EM6NPON4F(4,4)当F在EP下方时,作FGy轴于G,FHx轴于HFGEFHP90GFHEFP90GFEHFPFEFPFGFH, GEHPHFOG,FGOH2OG6OHOGOH2F(2,2)【点睛】此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解5、见详解【解析】【分析】根据高斯记号x表示不超过x的最大整数,确定出点P(x,x+x)的纵坐标随横坐标变化的分段函数解析式,画出图象即可【详解】解:x表示不超过x的最大整数, 当-1x0时,x=-1,P(x,x-1)当0x1时,x=0,P(x,x)图象变化如图:【点睛】本题考查了分段函数的图象及其性质,通过自变量的取值确定函数的解析式是本题的关键