《难点详解京改版八年级数学下册第十四章一次函数定向测评试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十四章一次函数定向测评试卷(含答案详解).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于变量x,y的关系,其中y不是x的函数的是()ABCD2、直线yax+a与直线yax在同一坐标系中的大致图
2、象可能是()ABCD3、如图,一次函数yax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A关于x的不等式ax+b0的解集是x2B关于x的不等式ax+b0的解集是x2C关于x的方程ax+b0的解是x4D关于x的方程ax+b0的解是x24、如图,一次函数ykx+b(k0)的图像经过点A(1,2)和点B(2,0),一次函数y2x的图像过点A,则不等式2xkx+b0的解集为( )Ax2B2x1C2x1D1x05、一次函数ykx+b的图象如图所示,则下列说法错误的是()Ay随x的增大而减小Bk0,b0C当x4时,y0D图象向下平移2个单位得yx的图象6、一次函数y=(m-
3、2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )ABC3D7、如图,一次函数的图象经过点,则下列结论正确的是( )A图像经过一、二、三象限B关于方程的解是CD随的增大而减小8、如图,直线l是一次函数的图象,下列说法中,错误的是( )A,B若点(1,)和点(2,)是直线l上的点,则C若点(2,0)在直线l上,则关于x的方程的解为D将直线l向下平移b个单位长度后,所得直线的解析式为9、一次函数的一般形式是(k,b是常数)( )Ay=kx+bBy=kxCy=kx+b(k0)Dy=x10、根据下列表述,能够确定具体位置的是()A北偏东25方向B距学校80
4、0米处C温州大剧院音乐厅8排D东经20北纬30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3,则O10的坐标是_2、如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E直线上有一点P(P在x轴上方)且,则点P的坐标为_3、数形结合是解决数学问题常用的思想方法之一如图,直线y2x和直线yaxb相交于点A,则方程组的解为_4、直线y=-3x+12与x轴的交点坐标是_5、如图,函数和的图象相交于,则不等式
5、的解集为_三、解答题(5小题,每小题10分,共计50分)1、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元 (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进
6、N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?2、如图1,已知直线y2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰RtABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若ADAC,求证:BEDE(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(,k)是线段BC上一点,在x轴上是否存在一点N,使BPN面积等于BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理
7、由3、已知直线l1:y-xb与x轴交于点A,直线l2:yx与x轴交于点B,直线l1、l2交与点C,且C点的横坐标为1(1)求直线l1的解析式;(2)过点A作x轴的垂线,若点P为垂线上的一个动点,点Q为y轴上的一个动点,当CPPQQA的值最小时,求此时点P的坐标;(3)E点的坐标为(2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由4、如图1,直线与轴交于点,与轴交于点,点与点关于轴对称(1)求直线
8、的函数表达式;(2)设点是轴上的一个动点,过点作轴的平行线,交直线于点,交直线于点,连接若,请直接写出点的坐标 ;若的面积为,求出点的坐标 ;若点为线段的中点,连接,如图2,若在线段上有一点,满足,求出点的坐标5、我们知道,海拔高度每上升1千米,温度下降6 某时刻,连云港地面温度为20 ,设高出地面x千米处的温度为y (1)写出y与x之间的函数关系式(2)已知连云港玉女峰高出地面约600米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过连云港上空,若机舱内仪表显示飞机外面的温度为34 ,求飞机离地面的高度为多少千米?-参考答案-一、单选题1、D【解析】【详解】解:A、对于的每一个确定
9、的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键2、D【解析】【分析】若y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四
10、象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断【详解】解:A、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;B、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D【点睛】本题考查了一次函数
11、的图象:一次函数y=kx+b(k0)的图象为一条直线,当k0,图象过第一、三象限;当k0,图象过第二、四象限;直线与y轴的交点坐标为(0,b)3、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案【详解】解:A、由图象可知,关于x的不等式ax+b0的解集是x2,故不符合题意;B、由图象可知,关于x的不等式ax+b0的解集是x2,故不符合题意;C、由图象可知,关于x的方程ax+b0的解是x2,故不符合题意;D、由图象可知,关于x的方程ax+b0的解是x2,符合题意;故选:D【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键
12、在于能够利用数形结合的思想求解4、B【解析】【分析】根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2xkx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b0的解集是x-2,即可得出答案【详解】解:由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),不等式2xkx+b的解集是x-1,一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),不等式kx+b0的解集是x-2,不等式2xkx+b0的解集是-2x-1,故选:B【点睛】本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函
13、数图像的关系是解答此题的关键5、B【解析】【分析】由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数ykx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数ykx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x4时,函数图象在轴的下方,所以y0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次
14、函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.6、D【解析】【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-20,解之即可得出m2,进而可得出m=-3【详解】解:一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),m2-3=6,即m2=9,解得:m=-3或m=3又y的值随着x的值的增大而减小,m-20,m2,m=-3故选:D【点睛】本题考查了一次函数图象上点的坐
15、标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键7、A【解析】【分析】根据函数图象可知图象经过一、二、三象限,即可判断A选项,从图象上无法得知与轴的交点坐标,无法求得方程的解,即可判断B选项,根据图象与轴的交点,可知,进而可知,即可判断C选项,根据图象经过一、二、三象限,即可知随的增大而增大,进而判断D选项【详解】A. 图像经过一、二、三象限,故该选项正确,符合题意;B. 关于方程的解不一定是,不正确,不符合题意C. 根据图象与轴的交点,可知,则,故该选项不正确,不符合题意;D. 图象经过一、二、三象限,随的增大而增大,故该
16、选项不正确,不符合题意;故选A【点睛】本题考查了一次函数图象的性质,与坐标轴交点问题,增减性,熟练掌握一次函数图象的性质是解题的关键8、B【解析】【分析】根据一次函数图象的性质和平移的规律逐项分析即可【详解】解:A.由图象可知,故正确,不符合题意;B. -12,y随x的增大而减小,故错误,符合题意;C. 点(2,0)在直线l上,y=0时,x=2,关于x的方程的解为,故正确,不符合题意;D. 将直线l向下平移b个单位长度后,所得直线的解析式为+b-b=kx,故正确,不符合题意;故选B【点睛】本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键9、C【解析】
17、【分析】根据一次函数的概念填写即可【详解】解:把形如y=kx+b(k,b是常数,k0)的函数,叫做一次函数,故选:C【点睛】本题考查了一次函数的概念,做题的关键是注意k010、D【解析】【分析】根据确定位置的方法即可判断答案【详解】A. 北偏东25方向不能确定具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;D. 东经20北纬30可以确定一点的位置,故此选项正确故选:D【点睛】本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键二、填空题1、(,2)【解析】【分析
18、】先求出的长度,然后分别求出点的坐标为(2,2),点的坐标为(,2),点的坐标为(,0),即可得到观察图形可知,O点坐标变化三次后回到x轴正半轴,每个回到x轴横坐标增加,由此求解即可【详解】解:A(2,0),B(0,2),OA=BA=2,AOB=90,的长度,将扇形AOB沿x轴正方形做无滑动的滚动,,,点的坐标为(2,2),点的坐标为(,2),点的坐标为(,0),观察图形可知,O点坐标变化三次后回到x轴正半轴,每个回到x轴横坐标增加,103=3余3,点的坐标为(,2),即(,2),故答案为:(,2)【点睛】本题主要考查了点的坐标规律探索,求弧长,解题的关键在于能够根据题意找到规律求解2、(-3
19、,4)【解析】【分析】先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可【详解】解:A是直线与y轴的交点,C、D是直线与y轴、x轴的交点,A(0,4),D(-1,0),C(0,-2),AC=6;联立 ,解得,点B的坐标为(-2,2),可设直线AE的解析式为,直线AE的解析式为,E是直线AE与x轴的交点,点E坐标为(2,0),DE=3,点P的坐标为(-3,4),故答案为:(-3,4)【点睛】本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,
20、解题的关键在于能够熟练掌握一次函数的相关知识3、【解析】【分析】由直线y2x求得A的坐标,两直线的交点坐标为两直线解析式所组成的方程组的解【详解】解:直线y2x和直线yax+b相交于点A,A的纵坐标为3,32x,解得x,A(,3),方程组的解为故答案为:【点睛】本题考查一次函数与二元一次方程组之间的关系,理解两直线的交点坐标即为两直线解析式所组成的方程组的解是解题关键4、( 4,【解析】【分析】令y=0,求出x的值即可得出结论【详解】,当时,得,即直线与轴的交点坐标为:( 4,故答案为( 4,【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于令y=05、【解析】【分析】观察函数图象得到,
21、当时,直线都在直线的下方,于是可得到不等式的解集【详解】解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,即当时,不等式的解集为,故答案为:【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合三、解答题1、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元
22、【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可; (2)设购进N95型a箱,依题意得:2250(1+10%)a+50080%(80-a)115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: 10x+20y=3250030x+40y=87500 ,解得: x=2250y=500 ,答:
23、N95型和一次性成人口罩每箱进价分别为2250元、500元(2)解:设购进N95型a箱,则一次性成人口罩为(80a)套,依题意得: 2250(1+10%)a+50080%(80a)115000 解得:a40a取正整数,0a40a的最大值为40答:最多可购进N95型40箱(3)解:设购进的口罩获得最大的利润为w, 则依题意得:w500a+100(80a)400a+8000,又0a40,w随a的增大而增大,当a40时,W40040+800024000元即采购N95型40个,一次性成人口罩40个可获得最利润为24000元答:最大利润为24000元【点睛】本题考查了二元一次方程组的应用、一元一次不等式
24、组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式2、(1)C(3,1),yx+2;(2)见解析;(3)存在,点N(,0)或(,0)【解析】【分析】(1)过点C作CHx轴于点H,根据直线y2x+2与y轴,x轴分别交于A,B两点,可得点A、B的坐标分别为:(0,2)、(1,0),再证得CHBBOA,可得BHOA2,CHOB,即可求解;(2)过点C作CHx轴于点H,DFx轴于点F,DGy轴于点G,可先证明BCHBDF,得到BF=BH,再由B(-1,0),C(
25、3,1),可得到OF=OB=1,从而得到 DG=OB=1,进而证得BOEDGE,即可求证;(3)先求出直线BC的表达式为,可得k ,再求出点M(6,0),从而得到SBMC,SBPN,即可求解【详解】解:(1)过点C作CHx轴于点H,令x0,则y2,令y0,则x2,则点A、B的坐标分别为:(0,2)、(1,0),HCB+CBH90,CBH+ABO90,ABOBCH,CHBBOA90,BCBA,CHBBOA(AAS),BHOA2,CHOB,则点C(3,1),设直线AC的表达式为ymx+b ,将点A、C的坐标代入一次函数表达式:ymx+b得:,解得:,故直线AC的表达式为:yx+2;(2)如图,过点
26、C作CHx轴于点H,DFx轴于点F,DGy轴于点G,AC=AD,ABCB,BC=BD,CBH=FBD,BCHBDF,BF=BH,C(3,1),OH=3,B(-1,0),OB=1, BF=BH=2,OF=OB=1,DG=OB=1, OEB=DEG,BOEDGE,BE=DE;(3)设直线BC的解析式为 ,把点C(3,1),B(1,0),代入,得: ,解得: ,直线BC的表达式为:,将点P坐标代入直线BC的表达式得:k ,直线AC的表达式为:yx+2,点M(6,0),SBMCMByC51,SBPNSBCMNBNB,解得:NB,故点N(,0)或(,0)【点睛】本题主要考查了求一次函数解析式,等腰三角形
27、的性质,一次函数的性质和图象,熟练掌握利用待定系数法求一次函数解析式,等腰三角形的性质,一次函数的性质和图象是解题的关键3、(1);(2)点的坐标;(3)点的坐标为或,或【解析】【分析】(1)当时,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;(2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;(3)当点在直线上方,画出图形,证明,利用,即可求解当点在直线下方时,同的方法即可得出结论如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得结论【详解】解:(1)当时,即点的坐标为,将点的坐标代入直线得:,解得:,故:直线的解析式为:;(2)确定点关于过点垂线的对称点、点关于
28、轴的对称点,连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:将点、点的坐标代入一次函数表达式:得:,解得:,则直线的表达式为:,当时,即点的坐标为,的值,即:当的值最小为时,此时点的坐标;(3)将、点坐标代入一次函数表达式,同理可得其表达式为当点在直线上方时,设点,点,点,过点、分别作轴的平行线交过点与轴的平行线分别交于点、,即,解得故点的坐标为,当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,同的方法得,如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得即:点的坐标为,或,【点睛】本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知
29、识点,其中(2)中,通过画图确定点、的位置是本题的难点4、(1)y=-12x+3;(2)(-32,94);点的坐标为(322,0)或(-322,0);点F的坐标(910,0)【解析】【分析】(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;(2)设点M(m,0),则点P(m,12m+3),则OM=-m,由B(0,3),C(6,0),则OB=3,OC=6,MC=6-m,再由勾股定理得BM2+BC2=MC2,BM2=OM2+OB2,BC2=OC2+OB2则m2+32+62+32=6-m2,由此求解即可;设点M(n,0), P(n,12n+3),点在直线BC:y
30、=-12x+3上,Q(n,-12n+3),PQ=|12n+3-(-12n+3)|=|n|,SPQB=12|n|n|=12n2=94,进行求解即可;过点作FHFK交于H,过点H作HEx轴于,根据,KFH是等腰直角三角形,再证KOFFEH(AAS),得出EH=OF,EF=OK,根据点为线段的中点,求出K(0,32),设F(x,0),则OE=x+32, 待定系数法求直线的解析式为y=-14x+32,点H在上,H(x+32,x),代入得方程x=-14(x+32)+32解方程即可【详解】(1)对于,令,y=3,B(0,3),令,12x+3=0,x=-6,A(-6,0),点与点A关于轴对称,C(6,0),
31、设直线的解析式为,6k+b=0b=3,k=-12b=3,直线的解析式为y=-12x+3; (2)设点M(m,0),P(m,12m+3),B(0,3),C(6,0),BC2=OB2+OC2=9+36=45,BM2=OM2+OB2=m2+9,MC2=(6-m)2,MBC=90,BMC是直角三角形,BM2+BC2=MC2,m2+9+45=(6-m)2,m=-32,P-32,94,故答案为:-32,94; 设点M(n,0),点在直线AB:y=12x+3上,P(n,12n+3),点在直线BC:y=-12x+3上,Q(n,-12n+3),PQ=|12n+3-(-12n+3)|=|n|,PQB的面积为,SP
32、QB=12|n|n|=12n2=94,n=322,M(322,0)或(-322,0); 过点作FHFK交于H,过点H作HEx轴于,CKF=45,KFH是等腰直角三角形,KF=FH,KFO+HFE=90,KFO+FKO=90,HFE=FKO,KOF=FEH=90,KOFFEH(AAS),EH=OF,EF=OK,点为线段的中点,EF=OK=32,K(0,32),设F(x,0),则OE=x+32,EH=OF=x,则H(x+32,x),C(6,0),K(0,32),设直线的解析式为,6k+b=0b=32,解得:k=-14b=32,直线的解析式为y=-14x+32,点H在上,H(x+32,x),x=-1
33、4(x+32)+32,解得:x=910,点的坐标为(910,0)【点睛】本题主要考查了坐标与图形,一次函数与几何综合,全等三角形的性质与判定,等腰直角三角形的性质,解题的关键在于能够熟练掌握待定系数法求一次函数解析式5、(1)y=20-6x;(2)16.4;(3)9千米【解析】【分析】(1)结合题意列关系式,即可得到答案;(2)结合(1)的结论,根据一次函数的性质计算,即可得到答案;(3)结合(1)的结论,通过求解一元一次方程,即可得到答案【详解】(1)根据题意,得:y=20-6x;(2)结合(1)的结论,得山顶的温度大约是:20-0.66=20-3.6=16.4;(3)结合(1)的结论,得:20-6x=-34x=9飞机离地面的高度为9千米【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解