《最新人教版九年级数学下册第二十八章-锐角三角函数单元测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《最新人教版九年级数学下册第二十八章-锐角三角函数单元测试试题(无超纲).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形2、如图,点为边
2、上的任意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD3、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE4、在RtABC中,C90,sinA,则cosB等于( )ABCD5、cos60的值为()ABCD16、如图,在直角坐标平面内有一点,那么射线与轴正半轴的夹角的正切值是( )ABCD7、如图,在ABC中,C=90,ABC=30,D是AC的中点,则tanDBC的值是( )A B C D8、在正方形
3、网格中,ABC在网格中的位置如图,则sinB的值为()ABCD9、如图,AC是电杆AB的一根拉线,测得米,则拉线AC的长为( )A米B6sin52米C米D米10、计算的值等于( )AB1C3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB为半圆O的直径,点C为半圆上的一点,CDAB于点D,若AB=10,CD=4,则sinBCD的值为_2、如图,在中,点D是BC中点,点E、F分别在AB、AC上,连接DE、DF、EF,则EF的长为_3、计算:2cos60+(1)0_4、如图,在正方形中,对角线,相交于点O,点E在边上,且,连接交于点G,过点D作,连接并延长,交于
4、点P,过点O作分别交、于点N、H,交的延长线于点Q,现给出下列结论:;其中正确的结论有_(填入正确的序号)5、如图,圆内接正十二边形由边长相等的六个正方形和六个等边三角形拼成,则图1中cosAOB_,若圆O半径为,则图2中BCD的面积为_三、解答题(5小题,每小题10分,共计50分)1、2、如图,ABC中,ADBC,垂足是D,若BC14,AD12,求:(1)AC的值(2)sinC的值3、定义:如果一个三角形一条边上的高与这条边的比值叫做这条边所对角的准对(记作qad)如图1,在ABC中,AHBC于点H,则qadBAC当qadBAC时,则称BAC为这个三角形的“金角”已知在矩形ABCD中,AB3
5、,BC6,ACE的“金角”EAC所对的边CE在BC边上,将ACE绕点C按顺时针方向旋转(090)得到ACE,AC交AD边于点F(1)如图2,当45时,求证:ACF是“金角”(2)如图3,当点E落在AD边上时,求qadAFC的值4、计算:5、6tan230sin602tan45-参考答案-一、单选题1、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质
6、,从而完成求解2、C【分析】根据正弦值等于对边与斜边的比,可得结论【详解】解:在中,;在中,故选:【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键3、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90,ABCD,由折叠的性质得:FPFC,PFBBFC,FPB=C90,C
7、DAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90,CBF+BEA90,BGE90,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEBC,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符合题意故选C【点睛】本题主要考查了
8、正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解4、A【分析】由知道A=30,即可得到B的度数即可求得答案【详解】解:在RtABC中,C90,A=30,B=60,故选A【点睛】本题主要考查了特殊角的锐角三角函数值,直角三角形两锐角互余,解题的关键是正确识记30角的正弦值和60度角的余弦值5、C【分析】根据特殊角的余弦值即可得【详解】解:,故选:C【点睛】本题考查了特殊角的余弦,熟记特殊角(如)的余弦值是解题关键6、D【分析】作PMx轴于点M,构造直角三角形,根据三角函数的定义求解【详解】解:作PMx轴于点M,P(6
9、,8),OM=6,PM=8,tan=故选:D【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题7、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90,ABC=30,设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键8、A【分析】利用勾股定理先求出AB的长度,最后利用正弦值的定义得到,进而得到最终答案【详解】解:如图所示在中,由勾股定理可得: 故选:A【点睛】本题主要是考察了勾股定理和锐角三角函数的定义,掌握锐角三角函数的定义是解题的关键9、D【分析】根据余弦
10、定义:即可解答【详解】解:,米,米;故选D【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义10、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键二、填空题1、【解析】【分析】如图,连接OC,由AB是直径可得OC=OB=5,利用勾股定理可求出OD的长,即可得出BD的长,利用勾股定理可求出BC的长,根据正弦的定义即可得答案【详解】如图,连接OC,AB为半圆O的直径,AB=10,OC=OB=5,CDAB于点D,CD=4,OD=3,BC=,sinBCD=故答案
11、为:【点睛】本题考查圆的性质、勾股定理及三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是邻边与斜边的比值;正切是对边与邻边的比值;熟练掌握三角函数的定义是解题关键2、【解析】【分析】延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,根据点D为BC中点,得出BD=CD,先证BDECDG(SAS),可得BE=CG=3,B=GCD,得出GCH=DCG+ACB=B+ACB=60,根据30直角三角形先证可得HC=,利用锐角三角函数可求GH=cos30GC=,在RtGHF中,FG=,再证,即,根据三角函数可求即可【详解】解:延长ED到G使DG=ED,连结GC,GF,过G
12、作GHAC与H,点D为BC中点,BD=CD,在BDE和CDG中,BDECDG(SAS),BE=CG=3,B=GCD,B+ACB=180-BAC=180-120=60,GCH=DCG+ACB=B+ACB=60,在RtGCH中,HGC=90-HCG=30,HC=,GH=cos30GC=,CF=5,HF=CF-CH=5,在RtGHF中,FG=,即,在RtEFG中,故答案为【点睛】本题考查三角形全等判定与性质,三角形内角和,30直角三角形性质,锐角三角函数,勾股定理,直角三角形判定与性质,本题难度较大,综合性强,利用辅助线构造准确图形是解题关键3、2【解析】【分析】本题涉及零指数幂、特殊角的三角函数值
13、等考点针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】解:2cos60+(1)0=1+1=2故答案为:2【点睛】本题考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是掌握零指数幂、特殊角的三角函数值等考点的运算4、【解析】【分析】由“ASA”可证ANODFO,可得ON=OF,由等腰三角形的性质可求AFO=45;由外角的性质可求NAO=AQO由“AAS”可证OKGDFG,可得GO=DG;通过证明AHNOHA,可得,进而可得结论DP2=NHOH【详解】四边形ABCD是正方形,AO=DO=CO=BO,ACBD,AOD=NOF=90,AON=DOF,OAD+
14、ADO=90=OAF+DAF+ADO,DFAE,DAF+ADF=90=DAF+ADO+ODF,OAF=ODF,ANODFO (ASA),ON=OF,AFO=45,故正确;如图,过点O作OKAE于K,CE=2DE,AD=3DE,tanDAE=DEAD=DFAF=13,AF=3DF,ANODFO,AN=DF,NF=2DF,ON=OF,NOF=90,OK=KN=KF=FN,DF=OK,又OGK=DGF,OKG=DFG=90,OKGDFG (AAS),GO=DG,故正确;DAO=ODC=45,OA=OD,AOH=DOP,AOHODOP (ASA),AH=DP,ANH=FNO=45=HAO,AHN=AH
15、O,AHNOHA,AHHO=HNAH,AH2=HOHN,DP2=NHOH,故正确;NAO+AON=ANQ=45,AQO+AON=BAO=45,NAO=AQO,即Q=OAG故错误综上,正确的是故答案为:【点睛】本题是四边形综合题,查了正方形的性质,全等三角形的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质解决问题是解题的关键5、 ; 【解析】【分析】连接OP,根据题意,得到PB=PO=AP,从而得到BPO=150,BOP=15,AOP=60,故AOB=45,根据特殊角的函数值计算即可;如图2,连接GD,GE,可得GD是圆的直径,从而得到GED=90,根据DE
16、GH,得到EGH=90,根据EGH+CGH =180,得到C,G,E三点共线,CG边上的高就是DE;连接BF,CF,得到BFE=45,CFG=15,GFE=120,计算CFE=135,根据CFE+BFE =180,得到C,F,B三点共线,于是=+,根据半径等于正方形的边长等于等边三角形的边长,依次计算求和即可【详解】连接OP,圆内接正十二边形由边长相等的六个正方形和六个等边三角形拼成,PB=PO=AP,BPO=150,BOP=15,AOP=60,AOB=45,cosAOB= cos45=,故答案为:;如图2,连接GD,GE,BF,CF,圆内接正十二边形由边长相等的六个正方形和六个等边三角形拼成
17、,BFE=45,CGF=150,EF=FG=GH=HM=DM=DE,GFE=FED=EDM=DMH=MHG=HGF=120,六边形EFGHMD是正六边形,GC=GF,CFG=15,GFE=120,CFE=135,CFE+BFE =180,C,F,B三点共线,根据正六边形的性质,得GD是圆的直径,GED=90,DEGH,EGH=90,EGH+CGH =180,C,G,E三点共线,CG边上的高就是DE;=+,根据正六边形的性质,得半径等于正方形的边长等于等边三角形的边长, =1,过点F作FNEG,垂足为N,FGN=30,FN=, =,=1,=3=,=1+1+=,故答案为:【点睛】本题考查了正多边形
18、与圆,等边三角形的性质,特殊角的函数值,熟练掌握正六边形的判定和性质,学会分割法计算图形的面积是解题的关键三、解答题1、【解析】【分析】将式子中特殊角的三角函数值换掉,然后去绝对值,计算负指数幂,最后进行加减运算即可【详解】解:【点睛】题目主要考查特殊角的三角函数值的运算及绝对值、负指数幂的运算,熟记特殊角的三角函数值是解题关键2、(1)13;(2)【解析】【分析】(1)首先根据的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度;(2)由,代值计算即可【详解】(1)在中,;(2)在中,【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系是解题的关键3
19、、(1)见解析(2)【解析】【分析】(1)过点作于点,解直角三角形求得,进而证明,根据“金角”的定义即可证明当45时,ACF是“金角”(2)过点作于点,证明,可得,设,则,根据勾股定理列出方程,解方程即可求得,进而根据定义即可求得答案【详解】解:(1)四边形ABCD是矩形,ACE的“金角”EAC所对的边CE在BC边上, ,BC6,将ACE绕点C按顺时针方向旋转45得到ACE,即如图,过点作于点, 在中,,又设,则在中,在中,四边形是平行四边形当45时,ACF是“金角”(2)如图,过点作于点由(1)可知,则由旋转的性质可得,在中,则在中在等腰直角三角形中,设,则,在中,即解得(舍)则【点睛】本题考查了“准对”,三角形的“金角”的定义,解直角三角形,相似三角形的性质,矩形的性质,旋转的性质,理解新定义是解题的关键4、0【解析】【分析】根据化简绝对值,负整数指数幂,特殊角的三角函数值,进行混合运算即可【详解】解:原式【点睛】本题考查了化简绝对值,负整数指数幂,特殊角的三角函数值,牢记特殊角的三角函数值并正确的进行实数的混合运算是解题的关键5、【解析】【分析】将,代入式子计算即可【详解】解:,原式,【点睛】题目主要考查特殊角三角函数的混合运算,熟记特殊角的三角函数值是解题关键