《难点详解京改版八年级数学下册第十七章方差与频数分布必考点解析试题(名师精选).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十七章方差与频数分布必考点解析试题(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一组数据1,2,0,1,2,那么这组数据的方差是()A10B4C2D0.22、在某次读书知识比赛中育
2、才中学参赛选手比赛成绩的方差计算公式为: S2 (x188)2+(x288)2+(x888)2,以下说法不一定正确的是()A育才中学参赛选手的平均成绩为88分B育才中学一共派出了八名选手参加C育才中学参赛选手的中位数为88分D育才中学参赛选手比赛成绩团体总分为704分3、若样本的平均数为10,方差为2,则对于样本,下列结论正确的是( )A平均数为30,方差为8B平均数为32,方差为8C平均数为32,方差为20D平均数为32,方差为184、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是( )A
3、14,0.7B14,0.4C8,0.7D8,0.45、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A频率是0.5B频率是0.6C频率是0.3D频率是0.46、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )A2B11.1%C18D7、某班有50人,一次数学测试后,老师对测试成绩进行了统计由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s223后来小颖进行了补测,成绩是92分,关
4、于该班50人的数学测试成绩,下列说法正确的是( )A平均分不变,方差变小B平均分不变,方差变大C平均分和方差都不变D平均分和方差都改变8、一组数据a1、b1、c1、d1、e1、f1、g1的平均数是m,方差是n,则另一组数据2a3、2b3、2c3、2d3、2e3、2f3、2g3的平均数和方差分别是( )A2m3、2n3B2m1、4nC2m3、2nD2m3、4n9、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是()A平均数、中位数和众数都是3B极差为4C方差是D标准差是10、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()A1
5、4B12C9D8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小张所在的公司共有600名员工,他为了解公司员工所使用的手机品牌情况,随机调查了部分员工,并将调查得到的数据绘制成如图所示的统计图,那么小张所在公司使用“华为”品牌手机的人数约是_人2、如果一组数据,的方差是2,那么一组新数据,的方差是_3、已知一组数据:2,3,4,5,6,则这组数据的标准差是 _4、从全市份数学试卷中随机抽取份试卷,其中有份成绩合格,估计全市成绩合格的人数约为_人5、数据1,3,2,5和x的平均数是3,则这组数据的方差是_三、解答题(5小题,每小题10分,共计50分)1、甲、乙两支篮球队
6、进行了5场比赛,比赛成绩(整数)绘制成了折线统计图(如图,实、虚线未标明球队):(1)填写下表:平均数中位数方差甲 91 乙90 70.8(2)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、方差以及获胜场数这三个方面分别进行简要分析,你认为选派哪支球队参赛更有可能取得好成绩?2、第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市为了考查学生对冬奥知识的了解程度,某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整:(
7、收集数据)从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲:40,60,60,70,60,80,40,90,100,60,60,100,80,60,70,60,60,90,60,60乙:70,90,40,60,80,75,90,100,75,50,80,70,70,70,70,60,80,50,70,80(整理、描述数据)按如表分数段整理、描述这两组样本数据:分数(分)40x6060x8080x100甲学校2人12人6人乙学校3人10人7人(说明:成绩中优秀为80x100,良好为60x80,合格为40x60)(分析数据)两组样本数据的平均分、中位数、众数如表所示:学校平均分中位
8、数众数甲学校686060乙学校71.570a(得出结论)(1)(分析数据)中,乙学校的众数a (2)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是 校的学生;(填“甲”或“乙”)(3)根据抽样调查结果,请估计乙校学生在这次竞赛中的成绩是优秀的人数;(4)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由(从平均分、中位数、众数中至少选两个不同的角度说明推断的合理性)3、今年12月4日是第八个国家宪法日,宪法是国家的根本大法,是治国安邦的总章程为贯彻落实习近平总书记关于宪法学习宣传教育的系列重要指示精神,某校开展了丰富多彩的宪法宣传教育活动,并分别在
9、活动前后举办了有关学宪法的知识竞赛(百分制),活动结束后,在七年级随机抽取25名学生活动前后的竞赛成绩进行整理和描述,下面给出部分信息:活动后被抽取学生竞赛成绩为:82, 88, 96, 98, 84, 86, 89, 99, 94, 90, 79, 91, 99, 98, 87, 92, 86, 99, 98, 84, 93, 88, 94, 89, 98活动后被抽取学生竞赛成绩频数分布表成绩x(分)频数(人)75x80180x85385x90790x95m95x100n请你根据以上信息解决下列问题:(1)本次调查的样本容量是 ,表中m= ; n= ;(2)若想直观地反映出活动前后被抽取学生
10、竞赛成绩的变化情况,应该把数据整理,绘制成 统计图;(填“扇形”“条形”或“折线”)(3)若90分及以上都属于A等级,根据调查结果,请估计该校2000名同学中活动后的竞赛成绩为A等级的学生有多少人?4、某校随机抽取部分学生,对“学习习惯”进行问卷调查设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A很少;B有时;C常常;D总是将调查结果的数据进行了整理、绘制成如图两幅不完整的统计图请根据图中信息,解答下列问题:(1)填空:a %,b %;(2)请你补全条形统计图;(3)若该校有2000名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生各有多少名?5、甲、乙两名
11、射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:选手组数12345678910甲98908798999192969896乙85918997969798969898(1)根据上表数据,完成下列分析表:平均数众数中位数方差极差甲94.59616.6512乙94.518.65(2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么?-参考答案-一、单选题1、C【分析】根据方差公式进行计算即可方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差【详解】1,2,0,1,2,这组数据的平均数为故选C【点睛】本题考查了求一组数据的方差,掌握方差的计算公式是解题的关
12、键2、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可【详解】解:参赛选手比赛成绩的方差计算公式为:S2 (x188)2(x288)2(x888)2,育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为888704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式3、D【分析】由样本的平均数为10,方差为2,可得再利用平均数公式与方差公式计算的平均数与方差即可.【详解】解: 样本的平均数为10,方差为2, 故选D【点睛】本题考查的是平均数,方差的含义与计算,
13、熟练的运用平均数公式与方差公式进行推导是解本题的顾客.4、D【分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为则频率为故选D【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键5、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比)即频率=频数总数可得答案【详解】解:小明进球的频率是3050=0.6,故选:B【点睛】此题主要考查了频率,关键是掌握计算方法6、A【分析】根据CoronaVriusDisease中共有18个字
14、母,其中r出现2次可得答案【详解】解:CoronaVriusDisease中共有18个字母,其中r出现2次,频数是2,故选A【点睛】本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数7、A【分析】根据平均数,方差的定义计算即可【详解】解:小颖的成绩和其他49人的平均数相同,都是92分,该班50人的测试成绩的平均分为92分,方差变小,故选:A【点睛】本题考查了方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题8、B【分析】根据平均数和方差的变化规律即可得出答案【详解】a1、b1、c1、d1、e1、f1、g1的平均数是m,方差是n,数据a
15、、b、c、d、e、f、g的平均数是m+1,方差是n,2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;数据a、b、c、d、e、f、g的方差是n,数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22n=4n;故选:B【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数9、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断【详解】解:这组数据的平均数为:
16、(1+2+3+3+4+5)63,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为514,B选项不符合题意;S2(13)2+(23)2+(33)2+(33)2+(43)2+(53)2,C选项不符合题意;S,因此D选项符合题意,故选:D【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提10、B【分析】根据样本频数直方图、样本容量的性质计算,即可得到答案【详解】根据题意,第二组的频数是: 故选:B【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解二、填空题1、210
17、【分析】用样本中使用华为品牌的人数所占比例乘以总人数即可得出答案【详解】解:小张所在公司使用“华为”品牌手机的人数约是600210(人),故答案为:210【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况2、【分析】设一组数据,的平均数为,方差是,则另一组数据,的平均数为,方差是,代入方差公式,计算即可【详解】解:设一组数据,的平均数为,方差是,则另一组数据,的平均数为,方差是,则,【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差
18、变成这个数的平方倍即如果一组数据,的方差是,那么另一组数据,的方差是3、【分析】计算出平均数和方差后,再计算方差的算术平方根,即为标准差【详解】解:,这组数据的标准差是故答案为:【点睛】本题考查的是标准差的计算,掌握方差的计算公式和方差与标准差的关系是解题的关键,注意标准差即方差的算术平方根4、8400【分析】由题意可知:抽取500份试卷中合格率为,则估计全市10000份试卷成绩合格的人数约为份【详解】解:(人故答案为:8400【点睛】本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是明白利用样本中的数据对整体进行估算是统计学中最常用的估算方法5、2【分析】先由平均数的公式计算出x的
19、值,再根据方差的公式计算一般地设n个数据,x1,x2,xn的平均数为,(x1+x2+xn),则方差 【详解】解:x=53-1-3-2-5=4,s2= (1-3)2+(3-3)2+(2-3)2+(5-3)2+(4-3)2=2故答案为:2【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,xn的平均数为,(x1+x2+xn),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立三、解答题1、(1)90,28.4,87;(2)选派甲球队参赛更能取得好成绩【分析】(1)根据统计图可得甲队5场比赛的成绩,然后把5场比赛的成绩求和,再除以5即可得到平均数;根据中位数定义:把所用数据
20、从小到大排列,取位置处于中间的数可得中位数;根据方差公式S2(x1)2+(x2)2+(xn)2,进行计算即可;(2)利用表格中的平均数和方差进行比较,然后根据条形图可得甲乙两队各胜多少场,再进行比较即可【详解】解:(1)甲的平均数是:(82+86+95+91+96)90;甲队的方差是:(8290)2+(8690)2+(9590)2+(9190)2+(9690)228.4;把乙队的数从小到大排列,中位数是87;平均数中位数方差甲909128.4乙908770.8故答案为:90,28.4,87;(2)从平均分来看,甲乙两队平均数相同;从方差来看甲队方差小,乙队方差大,说明甲队成绩比较稳定;从获胜场
21、数来看,甲队胜3场,乙队胜2场,说明甲队成绩较好,因此选派甲球队参赛更能取得好成绩【点睛】本题考查统计图、平均数、中位数,以及方差,关键是掌握方差公式S2(x1)2+(x2)2+(xn)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立2、(1)70;(2)甲;(3)140人;(4)乙学校成绩较好,理由见详解【分析】(1)由众数的定义解答即可;(2)可从中位数的角度分析即可;(3)用总人数乘以乙校学生在这次竞赛中的成绩是优秀的人数占被调查人数的比例即可;(4)根据平均分和中位数乙校高于甲校即可判断【详解】解:(1)乙校的20名同学的成绩中70分出现的次数最多,乙学校的众数a70,
22、故答案为:70(2)甲校的中位数为60,小明的同学的成绩高于此学校的中位数,小明是甲校的学生;故答案为:甲(3)400140(人)估计乙校学生在这次竞赛中的成绩是优秀的人数有140人(4)乙校的平均分高于甲校的平均分,且乙校的中位数70高于甲校的中位数,说明乙校分数不低于70分的人数比甲多,乙校的成绩较好【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键3、(1)25,6,8(2)折线(3)1120人【分析】(1)由题意可知随机抽取样本容量为25,查取学生竞赛成绩的人数即为的值,的人数即为的值(2)折线统计图可以反映数据变化(3)等级的频率为,进而估计名同学
23、成绩为等级的学生人数(1)解:由题意可知样本容量为25, m=6, n=8故答案为:25,6,8(2)解:折线统计图可以反映数据变化故答案为:折线(3)解:等级的频率为该校2000名同学中活动后的竞赛成绩为等级的学生有人【点睛】本题考查了数据统计解题的关键在于正确查取各成绩区间学生个数4、(1)12,36;(2)见解析;(3)720人【分析】(1)首先计算出抽查的学生总数,然后再计算a、b的值即可;(2)计算出“常常”所对的人数,然后补全统计图即可;(3)利用样本估计总体的方法计算即可【详解】解:(1)调查总人数:(人),故答案为:12,36;(2)“常常”所对的人数:20030%60(人),
24、补全统计图如图所示:;(3)200030%600(人),200036%720(人),答:“常常”对错题进行整理、分析、改正的有600人,“总是”对错题进行整理、分析、改正的有720人【点睛】本题考查条形统计图与扇形统计图的综合运用,熟练掌握抽样的各项数目、各项百分比、总数、各项圆心角及整体的各项数目、各项百分比、总数等的计算方法是解题关键5、(1)见解析;(2)选择甲选手参加比赛,理由见解析【分析】(1)分别根据众数、中位数和极差的概念填充表格即可;(2)根据方差即可确定选择哪位选手参加比赛【详解】解:(1)根据表中甲、乙两名选手的成绩可知甲、乙的成绩的众数均为98;将乙选手的成绩从小到大排列可得:85,89,91,96,96,97,97,98,98,98,乙的中位数为:;乙选手成绩的极差为:98-85=13填充表格如下所示:平均数众数中位数方差极差甲94.5989616.6512乙94.59896.518.6513(2)S甲2S乙2,甲的成绩比较稳定,选择甲选手参加比赛【点睛】本题考查了众数、中位数和极差的概念及方差在实际生活中的应用,利用方差可以确定数据的波动大小,也就是数据的稳定性,由此即可解决问题;同时该题的计算量比较大,要注意细心运算