《难点解析京改版八年级数学下册第十七章方差与频数分布同步测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十七章方差与频数分布同步测评试卷(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID19),简称“新冠肺炎”,世界卫
2、生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )A2B11.1%C18D2、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A甲比乙稳定B乙比甲稳定C甲与乙一样稳定D无法确定3、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( )A9B8C7D64、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )A11B10C9D85、为了了解某校七年级名学生的跳绳情况(秒跳绳的
3、次数),随机对该年级名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数为:,则以下说法正确的是()A跳绳次数不少于次的占B大多数学生跳绳次数在范围内C跳绳次数最多的是次D由样本可以估计全年级人中跳绳次数在次的大约有人6、甲、乙两人各射击5次,成绩如表根据数据分析,在两人的这5次成绩中()成绩(单位:环)甲378810乙778910A甲的平均数大于乙的平均数B甲的中位数小于乙的中位数C甲的众数大于乙的众数D甲的方差小于乙的方差7、在频数分布表中,所有频数之和( )A是1B等于所有数据的个数C与所有数据的个数无关D小于所有数据的个数
4、8、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是()居民(户)5334月用电量(度/户)30425051A平均数是43.25B众数是30C方差是82.4D中位数是429、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A90分以上的学生有14名B该班有50名同学参赛C成绩在7080分的人数最多D第五组的百分比为16%10、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到
5、十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A平均数B中位数C方差D众数第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某班50名学生参加2013年初中毕业生毕业考试,综合评价等级为A,B,C等的学生情况如扇形图所示,该学校共有500人参加毕业考试,估计该学校得A等的学生有_名2、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_3、一组数据的极差是8,则另一组数据的极差是_4、据统计,某车间10名员工每人日平均生产零件个数为6,方差为2.5,引
6、入新技术后,每名员工每日都比原先多生产1个零件,则现在日平均生产零件个数为 _,方差为 _5、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为=38,=10,则_同学的数学成绩更稳定三、解答题(5小题,每小题10分,共计50分)1、某校为研究学生的课余爱好情况,采取抽样调査的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了_名学生;若该校共有1500名学生,估计全校爱好运动的学生共有_名;(2)补全条形统计图,并计算阅读部分圆心角是_度;(3)若该校九年级爱
7、好阅读的学生有150人,估计九年级有多少学生?2、某校七年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:组别发言次数nABCDEF(1)直接写出随机抽取学生的人数为_人;(2)直接补全频数直方图;(3)求扇形统计图中B部分所对应的百分比和F部分扇形圆心角的度数;(4)该校七年级共有学生1000人,请估计七年级学生这天在课堂上发言次数大于等于12次的人数3、为了迎接2022年高中招生考试,师大附中外国语学校对全校八年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试
8、成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:(1)在这次调查中,被抽取的学生的总人数为多少?(2)请将表示成绩类别为“中”的条形统计图补充完整:(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是 (4)学校八年级共有400人参加了这次数学考试,把成绩类别“优”与“中”的划成“上线生”,估计该校八年级共有多少名学生的数学成绩能“上线”?4、某校对七年级学生进行“综合素质”评价,评价的结果分为A、B、C、D四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制了两幅不完整的统计图根据统计图提供的信息,解
9、答下列问题:(1)B等级人数所占百分比是 ;C等级所在扇形的圆心角是 度;(2)请补充完整条形统计图;(3)若该校七年级学生共1000名,请根据以上调查结果估算:评价结果为A等级或B等级的学生共有 名5、为了庆祝新中国成立72周年,某校学生处在七年级和八年级开展了“迎国庆弘扬中华传统文化”知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析(竞赛成绩用x表示,共分为四个等级:Ax70,B.70x80,C.80x90,D.90x100)下面给出了部分信息:七年级C等中全部学生的成绩为:86,87,83,89,84,89,86,89,89,85八年级D等中全部
10、学生的成绩为:92,95,98,98,98,98,100,100,100,100七、八年级抽取的学生知识竞寨成绩统计表平均数中位数众数满分率七年级91bc八年级918797七年级抛取的学生知识竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)直接写出上述表中a,b,c,m的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的2500名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次知识竞赛中优秀的人数-参考答案-一、单选题1、A【分析】根据CoronaVriu
11、sDisease中共有18个字母,其中r出现2次可得答案【详解】解:CoronaVriusDisease中共有18个字母,其中r出现2次,频数是2,故选A【点睛】本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数2、C【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,甲、乙制作的个数稳定性一样,故选:C【点睛】本题主要考查了
12、利用方差进行决策,准确分析判断是解题的关键3、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键4、B【分析】极差除以组距,大于或等于该值的最小整数即为组数【详解】解:,分10组故选:B【点睛】本题考查了组距的划分,一般分为组最科学5、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘即可得;由频数分布直方图可知,大多数学生跳绳次数在范围内;因为每组数据包括左端值不包括右
13、端值,所以跳绳次数最多的不是次;由样本可以估计全年级人中跳绳次数在次的大约有(人),进行判断即可得【详解】A、跳绳次数不少于次的占,选项说法正确,符合题意;B、由频数分布直方图可知,大多数学生跳绳次数在范围内,选项说法错误,不符合题意;C、每组数据包括左端值不包括右端值,故跳绳次数最多的不是次,选项说法错误,不符合题意;D、由样本可以估计全年级人中跳绳次数在次的大约有(人),选项说法错误,不符合题意;故选A【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解6、C【分析】根据题意求出众数,中位数,平均数和方差,然后进行判断即可【详解】解:A、甲的成
14、绩的平均数(3+7+8+8+10)7.2(环),乙的成绩的平均数(7+7+8+9+10)8.2(环),所以A选项说法错误,不符合题意;B、甲的成绩的中位数为8环乙的成绩的中位数为8环,所以B选项说法错误,不符合题意;C、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C选项说法正确,符合题意;D、,所以D选项说法错误,不符合题意故选C【点睛】本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解7、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确 ;B. 频数之
15、和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关 ,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确故选择B【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键8、A【分析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断【详解】解:15户居民2015年4月份用电量为30,30,30,30,30,42,42,42,50,50,50,51,51,51,51,平均数为(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)42
16、,中位数为42;众数为30,方差为 5(3042)2+3(4242)2+3(5042)2+4(5142)282.4故B、C、D正确故选:A【点睛】本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键9、A【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在7080分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的是从条形图中获取信息
17、,频数与频率的含义,理解频数与频率的含义是解题的关键.10、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响二、填空题1、100【分析】根据各部分的和可以看作整体1
18、,求得A等的所占百分比,A等学生占该班人数的百分比乘以总人数即A等的人数【详解】解:500(1-30-50)=100故答案为:100【点睛】本题考查扇形统计图,解题的关键是记住百分比,总人数,所占人数之间的关系2、0.4【分析】先求出第四小组的频数,再根据频率=频数样本容量计算即可;【详解】由题可知:第四小组的频数,频率=频数样本容量;故答案是0.4【点睛】本题主要考查了频率和频数的计算,准确分析计算是解题的关键3、16【分析】因为x1,x2,x3,xn的极差是8,设xn-x1=8,则2x1+1,2x2+1,2x3+1,2xn+1极差为2(xn-x1)【详解】解:x1,x2,x3,xn的极差是
19、8,不妨设xn-x1=8,2x1+1,2x2+1,2x3+1,2xn+1极差为2(xn-x1)=28=16故答案为:16【点睛】本题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值4、7 2.5 【分析】新数据是在原数据的基础上分别加上1所得,据此新数据的平均数在原数据平均数基础上加1,数据的波动幅度不变【详解】解:根据题意,新数据是在原数据的基础上分别加上1所得,所以现在日平均生产零件个数为6+17,方差为2.5,故答案为:7;2.5【点睛】本题主要考查方差和平均数,解题的关键是根据题意得出新数据是在原数据的基础上分别加上1所得,据此新数据的平均数在
20、原数据平均数基础上加1,数据的波动幅度不变5、乙【分析】根据平均数相同时,方差越小越稳定可以解答本题【详解】解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为,乙同学的数学成绩更稳定,故答案为:乙【点睛】本题考查方差,解题的关键是明确方差越小越稳定三、解答题1、(1)100,600;(2)图形见解析,108;(3)500【分析】(1)根据娱乐的人数以及百分比求出总人数即可再根据抽查的学生中爱好运动的学生比例计算全校爱好运动的人数(2)求出阅读的人数,画出条形图即可,利用360百分比取圆心角(3)根据总人数,个体,百分比之间的关系解决问题即可【详解】(1)总人数=2020%=100(
21、名),若该校共有1500名学生,估计全校爱好运动的学生有1500=600(名)故答案为100,600(2)阅读人数人圆心角=条形图如图所示:故答案为108(3)15030%=500(名),答:估计九年级有500名学生【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、(1)50;(2)补全频数直方图见解析;(3)B部分所对应的百分比;F部分扇形圆心角的度数为;(4)180人【分析】(1)用A组频数除以频率,即可求得抽取人数为50人;(2)用50乘以C组所占百分比求出频数,用50减A、B、C、D、E组频数,即可求解,补全直方图即可;(3)
22、用B组频数除以50,即可求解;用F组频数除以50再乘以360即可求解;(4)用样本估计总体,用1000乘以样本中发言次数大于等于12的人数所占百分比,问题得解【详解】(1)36%=50,故答案为:50; (2)5030%=15, 50-3-10-15-13-4=5,补全频数直方图如下;(3)B部分所对应的百分比,F部分扇形圆心角的度数为;(4)(人),答:估计该校七年级学生1000人中,这天在课堂上发言次数大于等于12次的人数为180人【点睛】本题考查了直方图,扇形图,用样本估计总体等知识,理解直方图、扇形图的意义,根据两种统计图中提供的公共信息求出样本容量是解题关键3、(1)50(人);(2
23、)10(人),图形见详解;(3)72(4)160(人)【分析】(1)利用成绩为良的人数以及百分比求出总人数即可(2)求出成绩为中的人数,画出条形图即可(3)根据圆心角360百分比即可(4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可【详解】解:(1)总人数2244%50(人)(2)中的人数501022810(人),条形图如图所示:(3)表示成绩类别为“优”的扇形所对应的圆心角的度数36072,故答案为72(4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),抽查中成绩类别“优”与“中”的划成“上线生”百分比为:学校八年级共有400人参加了这次数学
24、考试,估计该校八年级优秀人数为40040%160(人)【点睛】本题考查条形统计图和扇形统计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力4、(1)25%;72;(2)见解析;(3)700【分析】(1)先根据D等级人数及其所占百分比求出被调查的总人数,再由四个等级人数之和等于总人数求出B等级人数,最后用B等级人数除以总人数可得答案,再用360乘以C等级人数所占比例可得答案;(2)根据(1)中计算结果可补全条形图;(3)用总人数乘以样本中A、B等级人数和所占比例即可【详解】解:(1)被调查的人数为
25、410%40(人),B等级人数为40(18+8+4)10(人),则B(良好)等级人数所占百分比是 100%25%,在扇形统计图中,C(合格)等级所在扇形的圆心角度数是36072,故答案为:25%;72;(2)补全条形统计图如下:;(3)估计评价结果为A(优秀)等级或B(良好)等级的学生共有1000700(人)故答案为:700【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小5、(1)a=10%;b=89;c=100;m=10;(2)七年级的成绩更好,见解
26、析;(3)估计两个年级此次知识竞赛中优秀的人数为1435人【分析】(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去B、C、D所占比例即可得出a的值;根据中位数的定义(将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;(2)答案不唯一,合理均可;(3)总人数乘以90分(包含90分)以上人数所占比例即可【详解】解:(1)七年级C等有10
27、人,故C等所占比例为100%25%,所以a=1-20%-45%-25%=10%;七年级A等有:4010%=4(人),B等有:4020%=8(人),把七年级所抽取了40名同学的知识竞赛成绩从低到高排列,排在最中间的数是89,89,所以中位数b=89;因为七年级满分人数为:4025%=10(人),所以众数c=100;八年级满分率为:100%10%,故m=10;(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;(3)180045%+2500100%=1435(人),估计两个年级此次知识竞赛中优秀的人数为1435人【点睛】本题考查频数分布直方图,扇形统计图,掌握两个统计图中数量之间的关系是正确解答的关键