《难点详解京改版八年级数学下册第十七章方差与频数分布必考点解析试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十七章方差与频数分布必考点解析试题(含详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差
2、如下表所示:甲乙丙平均数/分969597方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A甲B乙C丙D丁2、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方差变小D平均数变大,方差变大3、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生
3、周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)45812学生人数(人)3421A中位数是6.5B众数是12C平均数是3.9D方差是64、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( )甲乙丙丁平均数/m180180185185方差8.23.9753.9A甲B乙C丙D丁5、小明3分钟共投篮80次,进了50个球,则小明进球的频率是( )A80B50C1.6D0.6256、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是(
4、)A7B8C9D107、水稻科研人员为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取60株,分别量出每株高度,发现两组秧苗的平均高度和中位数均相同,甲、乙的方差分别是3.6,6.3,则下列说法正确的是( )A甲秧苗出苗更整齐B乙秧苗出苗更整齐C甲、乙出苗一样整齐D无法确定甲、乙出苗谁更整齐8、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A众数B中位数C平均数D方差9、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差s2甲乙丙丁平均数(单位:秒)52m5250方差s2(单位:秒2)4.5n12.517.5根
5、据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()Am50,n4Bm50,n18Cm54,n4Dm54,n1810、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( )A9B8C7D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据0,1,3,2,4的平均数是_,这组数据的方差是_2、某科研小组为了考查A区域河流中野生鱼的数量,从中捕捞200条,作上标记后,放回河中,经过一段充足的时间后,再从中抽捞出300条,发现有标记的
6、鱼有15条,则估计A区域河流中野生鱼有_条3、已知一组数据x1,x2,x3,方差是2,那么另一组数据2x14,2x24,2x34的方差是 _4、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试分析两人的成绩发现:84, 83.2,13.2, 26.36,由此学校决定让甲去参加比赛,理由是_5、若整数1至50的方差为,整数51至100的方差为,则与的大小关系是_三、解答题(5小题,每小题10分,共计50分)1、某校在八年级(1)班学生中开展对于“我国国家公祭日(12月13日)”知晓情况的问卷调查问卷调查的结果分为A、B、C、D四类,其中A类表示“
7、非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图请根据图中信息解答下列问题:(1)求该班参与问卷调查的人数 (2)把条形统计图补充完整 (3)求C类人数占参与问卷调查人数的百分比 (4)求扇形统计图中A类所对应扇形圆心角的度数2、甲、乙两人在5次打靶测试中命中的环数如下:平均数众数中位数方差甲880.4乙93.2甲:8,8,7,8,9;乙:5,9,7,10,9(1)填写表格;(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?3、在疫情防控期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况在全市
8、各学校随机调查了部分参与志愿服务的教职工,对他们志愿服务的时间进行了统计,整理并绘制成如下的统计表和不完整的统计图AaB10C16D20(1)本次被抽取的教职工共有 名;(2)表中a = ,扇形统计图中“C”部分所占百分比为 %;(3)若该市共有30 000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?4、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A80x85,B85x90,C90x95,D:95x100)七年级10名学生的成
9、绩是:96,80,96,86,99,96,90,100,89,82八年级10名学生的成绩在C组中的数据是:94,90,92七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级bcd52八年级929310050.4根据以上信息,解答下列问题:(1)这次比赛中 年级成绩更平衡,更稳定;(2)直接写出上述a、b、c的值:a ,b ,c ;d (3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x90)的人数5、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查学生睡眠时长记为x小时,将所得数据分为5组(A:;B:;C:;D:;E:),学校将所得到的数据进行分析
10、,得到如下部分信息:请你根据以上信息,回答下列问题:(1)直接写出a的值;(2)补全条形统计图;(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人?-参考答案-一、单选题1、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛【详解】解:根据题意,丁同学的平均分为:,方差为:;丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,应该选择丁同学去参赛;故选:D【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;
11、反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定2、A【分析】分别计算出原数据和新数据的平均数和方差即可得【详解】解:原数据的平均数为=192.8,则原数据的方差为(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2=4.512,新数据的平均数为=192,则新数据的方差为(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2=4,所以平均数变小,方差变小,故选:A【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式
12、3、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;C、这组数据的平均数是:(43+54+82+12)10=6;D、这组数据的方差是:(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2=6;故选:D【点睛】本题考查了平均数,中位数,众数和方差的意义平均数平均数表示
13、一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量4、D【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】解:,从丙和丁中选择一人参加比赛,S丙2S丁2,选择丁参赛,故选:D【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键5、D【分析】根据频率等于频数除以数据总和,即可求解【详解】小明共投篮80次,进了50个球,小明进球的频率=5080=0.625,故选D【点睛】本题主要考查频数和频率,掌握“频率等于频数除以数据总和”是解题的关
14、键6、A【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数【详解】解:第4小组的频数是40(65157)7,故选:A【点睛】本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和7、A【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】解:甲、乙的方差的分别为3.6、6.3,甲的方差小于乙的方差,甲秧苗出苗更整齐故选:A【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这
15、组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定8、D【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键9、A【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到
16、乙选手的成绩的平均数最大,方差最小,即可求解【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小故选:A【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好10、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和
17、是解题的关键二、填空题1、2 2 【分析】依据平均数的定义:,计算即可得;再根据方差的定义: 列式计算可得【详解】解:这组数据的平均数,方差,故答案为:2,2【点睛】本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键2、4000【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有200条,即可得出答案【详解】解:300条鱼中发现有标记的鱼有15条,有标记的占到,有200条鱼有标记,该河流中有野生鱼2004000(条);故答案为:4000【点睛】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想3、8【分析】
18、设这组数据,的平均数为,则另一组数据,的平均数为,因为数据,的方差为,所以数据,的方差为,进行计算即可得【详解】解:设这组数据,的平均数为,则另一组数据,的平均数为,数据,的方差为:,数据,的方差为:= = = =8故答案为:8【点睛】本题考查了方差,解题的关键是掌握方差的公式4、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断【详解】84, 83.2,13.2, 26.36, ,甲的平均成绩高,且甲的成绩较为稳定;故答案为:甲的平均成绩高,且甲的成绩较为稳定【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏
19、离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定5、【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案【详解】解:整数51至100是整数1至50的每一个数都加上50所得,一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,波动程度不变,方差不变,则故答案为:【点睛】本题考查方差的意义:一般地设个数据,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非
20、零常数,方差不变三、解答题1、(1)50人;(2)见解析;(3)20%;(4)108【分析】(1)利用样本估计总体,将D类型的人数与其所占的百分比相除即可;(2)用该班参与问卷调查的人数减去A、B、D类的人数即可;(3)用C类人数除以总调查人数再乘以100即可;(4)求出A类人数占总调查人数的百分比,再乘以即可【详解】(1)2040%50(人),所以该班参与问卷调查的人数为50人;(2)C类人数为(人),补全条形统计图如下: (3),所以C类人数占参与问卷调查人数的20%;(4),所以A类所对应扇形圆心角的度数为108【点睛】本题考查了数据的收集与统计图,结合条形与扇形统计图准确的获取数据信息
21、是解题的关键2、(1)见解析;(2)见解析【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定【详解】解:(1)8出现了3次,出现的次数最多,甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列5,7,9,9,10,则乙的中位数为9故填表如下:平均数众数中位数方差甲8880.4乙8993.2故答案为:8,8,9; (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛【点睛】本题考查了平均数,中位数,
22、众数和方差的意义平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量3、(1)50;(2)4,32;(3)21600【分析】(1)由B等级的人数及其所占百分比即可求出被调查的总人数;(2)用总人数减去B、C、D的人数即可得出a的值,用C等级人数除以被调查总人数即可得出其对应百分比;(3)用总人数乘以样本中C、D人数所占比例即可【详解】解:(1)本次被抽取的教职工共有1020%50(名),故答案为:50;(2)a50(101620)4,扇形统计图中“C”
23、部分所占百分比为100%32%,故答案为:4,32;(3)志愿服务时间多于60小时的教职工大约有3000021600(人)【点睛】此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息4、(1)八;(2)40;91.4;93;96;(3)840人【分析】(1)根据方差的意义求解即可;(2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;(3)用总人数乘以样本中成绩优秀(x90)的八年级学生人数对应的百分比即可【详解】(1)七年级成绩的方差为52,八年级成绩的方差为50.
24、4,八年级成绩的方差小于七年级成绩的方差,八年级成绩更平衡,更稳定;故答案为:八;(2)八年级学生成绩落在C组人数所占百分比为310100%=30%,a%=1-(20%+10%+30%)=40%,即a=40;七年级的平均数=将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,则这组数据的中位数七年级的成绩中96出现次数最多,所以众数d=96,故答案为:40;91.4;93;96;(3)估计参加此次调查活动成绩优秀(x90)的八年级学生人数是1200(1-20%-10%)=840(人)【点睛】考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量
25、之间的关系是解决问题的关键5、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为(人)【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,抽取的总人数为:(人),D组所占的比例为:,a的值为8;(2)C组频数为:,补全统计图如图所示:(3)不少于9个小时的只有A、B两个组,总数为:,所占比例为:,估计符合要求的人数为:(人)【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键