《精品解析2022年人教版八年级数学下册第十七章-勾股定理专项攻克练习题(精选).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版八年级数学下册第十七章-勾股定理专项攻克练习题(精选).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下列各组数为边长,不能构成直角三角形的是( )A3,4,5B,C1.5,2,3D9,12,152、如图,四边
2、形是边长为9的正方形纸片,将其沿折叠,使点落在边上的点处,点的对应点为点,则的长为( )A1.8B2C2.3D3、下列条件:(1)A90B,A:B:C3:4:5,A2B3C,AB:BC:AC3:4:5,能确定ABC是直角三角形的条件有()A1个B2个C3个D4个4、下列条件中,能判断ABC是直角三角形的是( )Aa:b:c3:4:4Ba1,b,cCA:B:C3:4:5Da2:b2:c23:4:55、在中,的对边分别为,则c的长为( )A2BC4D4或6、我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作周髀算经中汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称之为“赵爽弦
3、图”现在勾股定理的证明已经有400多种方法,下面的两个图形就是验证勾股定理的两种方法,在验证著名的勾股定理过程,这种根据图形直观推论或验证数学规律和公式的方法,简称为 “无字证明”在验证过程中它体现的数学思想是( )A函数思想B数形结合思想C分类思想D统计思想7、课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),ACB90,ACBC,从三角板的刻度可知AB20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是( )Acm2Bcm2Ccm2Dcm28、如图,一只蚂蚁沿着边长为4的正方体表面从点A出发,爬到点B,如果它运动的路径是最短的,则AC的长为(
4、)A4+2B4C2D49、如图,在ABC中,已知ABAC3,BC4,若D,E是边BC的两个“黄金分割”点,则ADE的面积为()A104B35CD20810、如图,一圆柱高为8cm,底面半径为2cm,一只蚂蚁欲从点A爬到点B处吃食物,需要爬行的最短路程(取3)是( )A10cmB12cmC14cmD4cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,长方形纸片ABCD中,AB8cm,BC17cm,点O在边BC上,且OB10cm将纸片沿过点O的直线折叠,若点B恰好落在边AD上的点F处,则AF的长为 _cm2、如图,点M是AOB平分线上一点,AOB60,MEOA于E,
5、OE,如果P是OB上一动点,则线段MP的取值范围是_3、如图,点P是AOB的角平分线上一点,过点P作PCOA交OB于点C,过点P作PDOA于点D,若AOB60,OC2,则PD_4、如图所示,等腰RtABC中,ACB90,ACBC3,D点为AC边上一点,E为AB边上一动点,将ADE沿着DE折叠,点A的对应点A落在ABC的边上,若AD2,则线段AC的长度为 _5、已知在平面直角坐标系中A(2,0)、B(2,0)、C(0,2)点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为_三、解答题(5小题,每小题10分,共计50分)1、已知RtABC中,AC=BC,ACB90,
6、F为AB边的中点,且DF=EF,DFE90,D是BC上一个动点如图1,当D与C重合时,易证:CD2DB22DF2;(1)当D不与C、B重合时,如图2,CD、DB、DF有怎样的数量关系,请直接写出你的猜想,不需证明(2)当D在BC的延长线上时,如图3,CD、DB、DF有怎样的数量关系,请写出你的猜想,并加以证明2、如图,ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2DA2AC2(1)求证:A90;(2)若AB8,AD:BD3:5,求AC的长3、观察图1,每个小正方形的边均为1可以得到每个小正方形的面积为1(1)图中阴影部分的面积是多少?阴影部分正方形的边长是多少?(2)估计边
7、长的值在哪两个相邻整数之间?(3)请你利用图2在的方格内作出边长为的正方形4、如图,已知,求的长5、如图,在RtABC中,ABC90,BCAB,AC8,点D是边AC的中点,动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动,同时,动点Q从点D出发,沿DC以每秒1个单位长度的速度向终点C匀速运动,当点P到达终点时,点Q也随之停止运动,过点Q作QEAC,使QEQD,且点E落在直线AC的上方,当点P不与点D重合时,以PQ、QE为邻边作长方形PQEF设长方形PQEF与ABC的重叠部分的面积为S,点P的运动时间为t(秒)(1)用含t的代数式表示线段AP的长度为 (2)当点F落在线段AB上时
8、,求t的值(3)用含t的代数式表示S(4)连结AF、DF当AFD是等腰三角形时,直接写出t的值-参考答案-一、单选题1、C【分析】根据勾股定理的逆定理逐一判断即可【详解】解:32+4252,A可以;,B可以;1.52+2232,C不能;92+122152,D可以,故选:C【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键2、B【分析】连接BM,MB,由于CB=3,则DB=6,在RtABM和RtMDB中由勾股定理求得AM的值【详解】解:连接BM,MB,设AM=x,在RtABM中,AB2+AM2=BM2,在RtMDB中,BM2=MD2+DB2,折叠,MB=MB,AB2+AM2
9、= MD2+DB2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2,故选:B【点睛】本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解3、B【分析】利用三角形内角和定理和勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可【详解】解:A90B,A+B90,C90,ABC是直角三角形;A:B:C3:4:5,设A3x,则B4x,C5x,3x+4x+5x180,解得:x15,C15575,ABC不是直角三角形;A2B3C, ,A(),ABC为钝角三角形;AB:BC:AC3:4:5,设AB3k,则BC4k,AC5k,A
10、B2+BC2AC2,ABC是直角三角形;能确定ABC是直角三角形的条件有共2个,故选:B【点睛】此题主要考查了勾股定理逆定理以及三角形内角和定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形必须满足较小两边平方的和等于最大边的平方才能做出判断4、B【分析】根据勾股定理的逆定理,以及三角形的内角等于逐项判断即可【详解】,设,此时,故不能构成直角三角形,故不符合题意;,故能构成直角三角形,故符合题意,且,设,则有,所以,则,故不能构成直角三角形,故不符合题意;,设,则,即,故不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角
11、和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于是解题关键5、D【分析】根据是直角边或斜边分别根据勾股定理计算即可;【详解】在中,的对边分别为,当是一条直角边时,;当是斜边时,;c的长为4或故选D【点睛】本题主要考查了勾股定理的应用,准确计算是解题的关键6、B【分析】利用各类数学思想的概念及相关应用,进行判断分析即可【详解】解:两个图都验证了勾股定理即:的成立,故属于数形结合思想故选:B【点睛】本题主要是考查了数形结合思想在勾股定理的证明中的应用,明确数形结合思想的含义及其与勾股定理的证明的关系,是解决本题的关键,另外,数形结合思想还可用于函数与方程、不等式当中,后面学习一定要注意该思想
12、的应用7、A【分析】设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,然后证明DACECB得到CD=BE=2xcm,再利用勾股定理求解即可【详解】解:设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,由题意得:ACB=ADC=BEC=90,ACD+DAC=ACD+BCE=90,DAC=ECB,又AC=CB,DACECB(AAS),CD=BE=2xcm,故选A【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件8、C【分析】将正方体展开,右边的正方形与前面正方形放在一个面上,此时AB最短,根据三角形中位线,求出CN的长,利用
13、勾股定理求出AC的长即可【详解】解:将正方体展开,右边的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,ANMN,CNBMCNBM2,在RtACN中,根据勾股定理得:AC2,故选:C【点睛】本题考查了平面展开-最短路径问题,涉及的知识有:三角形中位线,勾股定理,熟练求出CN的长是解本题的关键9、A【分析】过点A作AFBC于点F,由题意易得,再根据点,是边的两个黄金分割点,可得,根据勾股定理可得,进而可得,然后根据三角形的面积计算公式进行求解【详解】解:过点A作AFBC于点F,如图所示:,在RtAFB中,点,是边的两个黄金分割点,DF=EF,;故选:A【点睛】本题主要考查二次根式的
14、运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键10、A【分析】先画出圆柱展开图形,最短路程是的长,是底面圆周长的一半,则,是高,根据勾股定理计算【详解】解:如图所示,由勾股定理得:,故选:A【点睛】本题考查了圆柱的平面展开最短路径问题,将圆柱展开为矩形,利用勾股定理求对角线的长即为最短路径的长二、填空题1、16【分析】过点F作FEBC于点E,则EF=AB=8cm,AF=BE,根据折叠知识,可得OF=OB10cm在 中,由勾股定理,可得OE=6cm,即可求解【详解】解:如图,过点F作FEBC于点E,则EF=AB=8cm,AF=BE,在
15、长方形ABCD中,CD=AB=8cm,根据题意得:OF=OB10cm在 中,由勾股定理得: ,AF=BE=OB+OE=16cm故答案为:16【点睛】本题主要考查了勾股定理,图形的折叠,熟练掌握勾股定理,图形折叠前后,对应线段相等,对应角相等是解题的关键2、MP1【分析】根据角平分线的意义,可得,进而可得勾股定理求得的值,根据角平分线的性质可知到的距离相等,进而根据垂线段最短可得最小值为1,进而可得MP的取值范围【详解】解:点M是AOB平分线上一点,AOB60,MEOA于E,OE,点M是AOB平分线上一点,到的距离相等,根据垂线段最短,即时,最小值为1,则MP1故答案为:MP1【点睛】本题考查了
16、角平分线的性质与定义,含30度角的直角三角形的性质,勾股定理,垂线段最短,掌握角平分线的性质是解题的关键3、【分析】作,则,由等腰三角形的性质可得,在中,利用勾股定理即可求解【详解】解:作,如下图:平分,在中,由勾股定理得,故答案为:【点睛】此题考查了角平分线的性质,勾股定理,三角形外角的性质,等腰三角形的判定与性质以及含直角三角形的性质等,解题的关键是灵活运用相关性质进行求解4、或【分析】分当点在AB上时和当点在BC上时两种情况讨论求解即可得到答案【详解】解:如图所示,当点在AB上时,由折叠的性质可得,ACB=90,AC=BC=3,CD=AC-AD=1,A=B=45,;如图所示,当点在BC上
17、时,由折叠的性质可得,CD=AC-AD=1,综上所述,或,故答案为:或【点睛】本题主要考查了勾股定理与折叠,等腰直角三角形的性质,三角形外角的性质,解题的关键在于能够熟练掌握相关知识进行求解5、(0,0),(,0),(2,0)【分析】因为点P、A、B在x轴上,所以P、A、B三点不能构成三角形再分RtPAC和TtPBC两种情况进行分析即可【详解】解:点P、A、B在x轴上,P、A、B三点不能构成三角形设点P的坐标为(m,0)当PAC为直角三角形时,APC90,易知点P在原点处坐标为(0,0);ACP90时,如图,ACP90AC2PC2AP2,解得,m,点P的坐标为(,0);当PBC为直角三角形时,
18、BPC90,易知点P在原点处坐标为(0,0);BCP90时,BCP90,COPB,POBO2,点P的坐标为(2,0)综上所述点P的坐标为(0,0),(,0),(2,0)【点睛】本题考查了勾股定理及其逆定理,涉及到了数形结合和分类讨论思想解题的关键是不重复不遗漏的进行分类三、解答题1、(1)CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得,连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论;(2)连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论【详解】解:(1)CD2+DB2=2DF2 证明:DF=EF,D
19、FE90, 连接CF,BE,如图 ABC是等腰直角三角形,F为斜边AB的中点 ,即 , 又 在和中 , ,CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2 证明:连接CF、BECF=BF,DF=EF又DFC+CFE=EFB+CFB=90DFC=EFBDFCEFB CD=BE,DCF=EBF=135 EBD=EBFFBD=13545=90 在RtDBE中,BE2+DB2=DE2 DE2=2DF2 CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题2、(1)见解析;(2)【分析
20、】(1)利用线段垂直平分线的性质可得CDBD,然后利用勾股定理逆定理可得结论;(2)首先确定BD的长,进而可得CD的长,再利用勾股定理进行计算即可【详解】(1)证明:连接CD,BC的垂直平分线DE分别交AB、BC于点D、E,CDDB,BD2DA2AC2,CD2DA2AC2,CD2AD2+AC2,ACD是直角三角形,且A90;(2)解:AB8,AD:BD3:5,AD3,BD5,DC5,AC【点睛】本题主要考查勾股定理及其逆定理、线段垂直平分线的性质定理,熟练掌握勾股定理及其逆定理、线段垂直平分线的性质定理是解题的关键3、(1)阴影部分面积为10; 阴影部分正方形的边长为;(2)边长的值在整数3和
21、4之间;(3)见解析【分析】(1)根据阴影部分的面积等于正方形的面积减去四周四个小直角三角形的面积列式计算即可得解;再利用算术平方根的定义求出边长;(2)根据无理数的大小估算方法解答;(3)利用勾股定理作出边长,画出正方形即可【详解】(1)阴影部分面积 阴影部分正方形的边长; (2),即边长的值在整数3和4之间;(3)如图所示,正方形即为所求【点睛】本题考查了作图复杂作图,算术平方根,三角形的面积以及无理数大小的比较,勾股定理,此种阴影部分的面积的求法是常用方法,需熟练掌握并灵活运用4、的长为【分析】连接,在中,根据勾股定理求出,然后在根据勾股定理求出即可【详解】解:连接,在中,在中,故的长为
22、【点睛】本题考查了勾股定理,熟练掌握勾股定理是解本题的关键5、(1)42t ;(2);(3)当时,当时,;(4)t1或【分析】(1)根据题意得,即可求出;(2)根据当点F落在线段AB上时,有即可求解;(3)分两种情况进行讨论,时间段为,;(4)分两种情况来研究,即和【详解】解:(1)为边AC的中点,AC8,动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动,故答案是:;(2)当点F落在线段AB上时,解得:;(3)由(2)知当时,整个长方形PQEF在ABC里,当时,;(4)当,即点为的中点时成立,解得:,当时,解得:,或(舍去),或【点睛】本题考查了列代数式,图象的运动问题、勾股定理、等腰三角形,解题的关键是通过数形结合来解决该题