精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步训练练习题(浙教版).docx

上传人:知****量 文档编号:28193933 上传时间:2022-07-26 格式:DOCX 页数:19 大小:176.63KB
返回 下载 相关 举报
精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步训练练习题(浙教版).docx_第1页
第1页 / 共19页
精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步训练练习题(浙教版).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步训练练习题(浙教版).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步训练练习题(浙教版).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解同步训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式由左边到右边的变形,是因式分解的是( )A.B.C.D.2、下列各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)23、下列分解因式正确的是()A.B.C.D.4、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.2B.2C.12D.125、下列各式能用平方差公式分解因式的是( )A.B.C

2、.D.6、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b27、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)8、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.9、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.110、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.11、若a2-b2=4,a-b=2,则a+b的值为( )A.- B. C.1D.212、下列等式从左到右的变

3、形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)13、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab14、多项式的公因式是()A.x2y3B.x4y5C.4x4y5D.4x2y315、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+1二、填空题(10小题,每小题4分,共计40分)1、若,则_2、因式分解:2a2-4a-6=_3、将分解因式_

4、4、若a+b2,a2b210,则2021a+b的值是 _5、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_6、已知x2y221,xy3,则x+y_7、若,则_8、若实数a、b满足:a+b6,ab10,则2a22b2_9、分解因式:_;_10、分解因式:x41_三、解答题(3小题,每小题5分,共计15分)1、把因式分解2、因式分解:(1)(2)n2(m2)+4(2m)3、分解因式:(1); (2)-参考答案-一、单选题1、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不

5、符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.2、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.3、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n

6、2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.4、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.5、D【分析】根据平方差公式逐个判断即可.【详解】解:A.是m和n的平方和,不是m和n的平方

7、差,不能用平方差公式分解因式,故本选项不符合题意;B.是2x和y的平方和,不是2x和y的平方差,不能用平方差公式分解因式,故本选项不符合题意;C.是2a和b的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D.,能用平方差公式分解因式,故本选项符合题意;故选:D.【点睛】本题考查了平方差公式分解因式,能熟记公式a2-b2=(a+b)(a-b)是解此题的关键.6、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因

8、式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.7、C【分析】根据平方差公式直接把b2a2分解即可.【详解】解:b2a2(ba)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).8、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、,分解错误,故此选项不符合题意;故选:B.【点睛

9、】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.9、A【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m、n的值,最后求出答案即可.【详解】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为(x2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.10、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛

10、】本题考查了公式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.11、D【分析】平方差公式为(a+b)(a-b)=a2-b2可以得到a2-b2=(a+b)(a-b),把已知条件代入可以求得(a+b)的值.【详解】a2- b2=4,a- b=1,由a2-b2=(a+b)(a-b)得到,4=2(a+b),a+b=2,故选:D.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a-b)=a2-b2.12、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个

11、多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.13、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选

12、:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.14、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为,所以的公因式为,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.15、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主

13、要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.二、填空题1、15【分析】将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.【详解】解:x2y5,xy3, .故答案为:15.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.2、2(a-3)(a+1)a+1)(a-3)【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a24a62(a22a3)2(a-3)(a+1)故答案为:2(a-3)(a+1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,

14、再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.3、【分析】原式利用平方差公式分解即可.【详解】解:=故答案为:.【点睛】此题考查了因式分解,熟练掌握平方差公式是解本题的关键.4、2026【分析】利用平方差公式求得ab,将ab代入2021a+b2021(ab)即可.【详解】解:a+b2,a2b210,a2b2(a+b)(ab)2(ab)10,ab5,2021a+b2021(ab)2021(5)2026,故答案为:2026.【点睛】本题主要考查了用平方差公式进行因式分解,解题的关键是利用平方差公式求得ab,牢记平方差公式 .5、12.【分析】先根据两平方项确定出这两个数,再根据完

15、全平方公式的乘积二倍项即可确定k的值.【详解】解:9x2+kxy+4y2(3x)2+kxy +(2y)2,kxy23x2y12xy,解得k12.故答案为:12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6、7【分析】根据平方差公式分解因式解答即可.【详解】解:x2y2(xy)(x+y)21,xy3,3(x+y)21,x+y7.故答案为:7.【点睛】此题考查平方差公式分解因式,关键是根据平方差公式展开解答.7、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】故填“2022”.【点

16、睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.8、120【分析】将所求式子变形,然后根据a+b6,ab10,即可求出所求式子的值.【详解】解:2a22b22(a2b2)2(a+b)(ab),a+b6,ab10,原式2610120,故答案为:120.【点睛】本题考查因式分解的应用、平方差公式,解答本题的关键是明确题意,求出所求式子的值.9、 【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:;故答案为:;.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提

17、取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10、.【分析】首先把式子看成x2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x41(x21)(x21)(x21)(x1)(x1).故答案是:(x21)(x1)(x1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.三、解答题1、【分析】直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解:【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.2、(1)(2)【分析】(1)先提取公因式 ,然后再利用完全平方公式进行分解即可;(2)先提取公因式 ,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m2)+4(2m),.【点睛】本题考查了因式分解,解题关键是掌握因式分解的顺序和方法,注意:因式分解要彻底.3、(1);(2).【分析】(1)先提取公因式xy,然后再运用公式法分解即可;(2)采用分组法、再运用平方差公式因式分解即可.【详解】解:(1)=)=; (2)=.【点睛】本题主要考查了因式分解,掌握分组法、提取公因式法和公式法是解答本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁